Power density of laser radiation as a primary importance factor in PDT

  • Евгения Денисова Шишко
  • Ирина Александровна Штонь
  • Николай Федорович Гамалея
  • Владимир Викторович Холин
Keywords: Tumor photodynamic therapy, Namalwa cell line, Photolon, hematoporphyrin, power density of laser radiation

Abstract

By animal experiments of last years, a special role of radiation power density in PDT was established: tumor irradiation with the same dose of light energy but different power densities (and accordingly, exposures) revealed in many cases an advantage of the regimen in which a low power density and more prolonged irradiation time were used. To verify the data, we exploited an analogical approach in experiments in vitro with a human leukemia cell culture Namalwa as a PDT target. The studies, performed with two different photosensitizers – Photolon (chlorin e6) and hematoporphyrin, showed that under equal irradiation doses, reduction of light power density by two or three times led to increase of dead cell numbers by 1.8 - 2,3 times. The results of additional experiments, in which kinetics of cell death was followed, allow to come nearer to understanding of mechanisms of the phenomenons observed.

Downloads

Download data is not yet available.

References

Agostinis P. Photodynamic therapy of cancer: an update / P.Agostinis., K.Berg, K.A.Cengel et al. // СA Cancer J. Clin.- 2011.- Vol.61, №4.- P.250–281.

Brown J.M. Tumor microenvironment and the response to anticancer therapy // Cancer Biol. Ther.– 2002.- Vol.1, № 5.– P.453-458.

Coutier S. Effects of fluence rate on cell survival and photobleaching in meta-tetra-(hydroxyphenyl)chlorin-photosensitized Colo 26 multicell tumor spheroids / S.Coutier, S.Mitra, L.N.Bezdetnaya et al. // Photochem. Photobiol.- 2001.- Vol.7, №3.- P.297-303.

Coutier S. Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice / S.Coilter, L.N.Bezdetnaya, T.H.Foster et al. // Radiat. Res.- 2002.- Vol.158, №3.- P.339-345.

Foster T.H. Analysis of photochemical oxygen consumption effects in photodynamic therapy / T.H.Foster, S.L.Gibson, L.Gao, R.Hilf // Proc. SPIE.- 1992.- Vol.1645.– P.104-114.

Foster T.H. Fluence rate effects in photodynamic therapy of multicell tumor spheroids / T.H.Foster, D.F.Hartley, M.G.Nichols, R.Hilf // Cancer Res.- 1993.- Vol.53, №6.- P.1249-1254.

François A., How to avoid local side effects of bladder photodynamic therapy: impact of the fluence rate / A.François, A.Salvadori, A.Bressenot et al. // J. Urol.– 2013.– Vol.190.– P.731-736.

Gibson S.L. Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas / S.L.Gibson, K.R. van der Meid, R.S.Murant et al. // Cancer Res.– 1990.– Vol.50, №22.– P.7236-7241.

Gibson S.L. Effects of photodynamic therapy on xenografts of human mesothelioma and rat mammary carcinoma in nude mice / S.L.Gibson, T.H.Foster, R.H.Feins et al.// Brit. J Cancer.- 1994.- Vol.69, №3.- P.473-481.

Henderson B.W. Fluence rate as a modulator of PDT mechanisms / B.W.Henderson, T.M.Bush, J.W.Snyder // Lasers Surg. Med.– 2006.– Vol.38.– P.489-493.

Mathews M.S. The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids / M.S.Mathews, E.Angell-Petersen, R.Sanchez et al. // Lasers Surg. Med..- 2009.- Vol.41.– P.578–584.

Moan J. On the diffusion length of singlet oxygen in cells and tissues // J. Photochem. Photobiol. B.- 1990.– Vol.6., №3.– P.343-344.

Moan J. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen / J.Moan, K.Berg // Photochem. Photobiol.- 1991.– Vol.53, №4.– P.549-553.

Nichols M.G. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids / M.G.Nichols, T.H.Foster // Phys. Med. Biol.- 1994.- Vol.39, №12.- P.2161-2181.

Rogers G.S. Continuous low-irradiance photodynamic therapy: a new therapeutic paradigm // J. Nat. Comprehensive Cancer Network.– 2012.– Vol.10, Suppl.2.– S14–S17.

Seshadri M. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy / M.Seshadri, D.A.Bellnier, L.A.Vaughan et al. // Cancer Res.- 2008.– Vol.14, №9.– P.2796-2805.

Sharman W.M. Role of activated oxygen species in photodynamic therapy / W.M.Sharman, C.M.Allen, J.E. van Lier // Methods Enzymol.- 2000.- Vol.319.– P.376-400.

Sitnik T.M Effects of fluence rate on cytotoxicity during photodynamic therapy / T.M.Sitnik, B.W.Henderson // Proc. SPIE.- 1997.– Vol.2972.- P.95-102.

Toffoli S. Intermittent hypoxia as a key regulator of cancer cell and endothelial cell interplay in tumours / S.Toffoli, C.Michiels // FEBS J.- 2008.– Vol.275.– P. 991-3002.

Tromberg B.J. Tumor oxygen tension during photodynamic therapy / B.J.Tromberg, S.Kimel, A.Orenstein et al. // J. Photochem. Photobiol. B.– 1990.– Vol.5.– P.121-126.

Published
2015-10-07
How to Cite
Шишко, Е. Д., Штонь, И. А., Гамалея, Н. Ф., & Холин, В. В. (2015). Power density of laser radiation as a primary importance factor in PDT. Photobiology and Photomedicine, 11(1, 2), 70-76. Retrieved from https://periodicals.karazin.ua/photomedicine/article/view/4080
Section
Photobiology and experimental photomedicine