Gold nanoparticles as components for third generation photosensitizers for photodynamic thepapy of tumours

  • Ірина Олександрівна Штонь
  • Микола Федорович Гамалія
Keywords: Nanoparticles, gold, photodynamic therapy, photosensitizers

Abstract

Gold nanoparticles are one of the most attractive to the medical science specialists. Unique properties of gold nanoparticles allow to use them not only as therapeutic agents transporters, but also as an important components of nanocomposite drugs for targeted photodynamic and photothermal therapy of tumors. The authors discuss main features of gold nanoparticles that determine nanocomposite effectiveness and analyze the promising trends in composite photosensitizers development.

Downloads

Download data is not yet available.

References

Гамалія М.Ф. Фотодинамічна активність сенсибілізаторів другого покоління — фотолону (хлорину е6) та його золотого нанокомпозиту: досліди in vitro та in vivo / М.Ф.Гамалія, Є.Д.Шишко, І.О.Штонь та ін. // Фотобіологія та фотомедицина.– 2012.– Т.9, №1,2.– С.94–98.

Хлебцов Н.Г. Биораспределение и токсичность золотых наночастиц / Н.Г.Хлебцов, Л.А.Дыкман // Нанобиология.— 2010.— Т.6, №1–2.— С.39–59.

Acharya S. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy / S.Acharya, F.Dilnawaz, S.K.Sahoo // Biomaterials.— 2009.— Vol.30, №29.— P.5737–5750.

Alexis F. Nanoparticle technologies for cancer therapy / F.Alexis, E.M.Pridgen, R.Langer et al. // Handb. Exp. Pharmacol.— 2010.— Vol.197.— P.55–86.

Arvizo R.R. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge / R.R.Arvizo, S.Rana, O.R.Miranda et al. // Nanomedicine.— 2011.— Vol.7, №5.— P.580–587.

Berg K. Cellular uptake and relative efficiency in cell inactivation by photoactivated sulfonated meso-tetraphenylporphines / K.Berg, J.C.Bommer, J.W.Winkelman et al. // Photochem. Photobiol.— 1990.— Vol.52, №4.— P.775–781.

Berg K. Lysosomes and microtubules as targets for photochemotherapy of cancer / K.Berg, J.Moan // Photochem. Photobiol.—1997.— Vol.65, №3.— P.403–409.

Boisselier E. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity / E.Boisselier, D.Astruc // Chem. Soc. Rev.— 2009.— Vol.38, №6.— P.1759–1782.

Brust M. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system / M.Brust, M.Walker, D.Bethell et al. // J. Chem. Soc., Chem. Commun.— 1994.— №7.— P.801–802.

Byrne J.D. Active targeting schemes for nanoparticle systems in cancer therapeutics / J.D.Byrne, T.Betancourt, L.Brannon-Peppas // Adv. Drug Deliv. Rev.— 2008.— Vol.60, №15.— P.1615–1626.

Camerin M. The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma / M.Camerin, M.Magaraggia, M.Soncin et al. // Eur. J. Cancer.— 2010.— Vol.46, №10.— P.1910–1908.

Chatterjee D.K. Nanoparticles in photodynamic therapy: an emerging paradigm / D.K.Chatterjee, L.S.Fong, Y.Zhang // Adv. Drug Deliv. Rev.— 2008.— Vol.60, №15.— P.1627–1637.

Cheng Y. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer / Y.Cheng, C.A.Samia, J.D.Meyers et al. // J. Amer. Chem. Soc.— 2008.— Vol.130, №32.— P.10643–10647.

Cheng Y. Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface / Y.Cheng, A.C.Samia, J.Li et al. // Langmuir.— 2010.— Vol.26, №4.— P.2248–2250.

Cheng Y. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? / Y.Cheng, J.D.Meyers, R.S.Agnes et al. // Small.— 2011.— Vol.7, №16.— P.2301–2306.

Damoiseau X. Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation / X.Damoiseau, H.J.Schuitmaker, J.W.Lagerberg et al. // J. Photochem. Photobiol. B.— 2001.— Vol.60, №1.— P.50–60.

Demberelnyamba D. Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents / D.Demberelnyamba, M.Ariunaa, Y.K.Shim // Int. J. Mol. Sci.— 2008.— Vol.9, №5.— P.864–871.

Doane T. Nanoparticle mediated non-covalent drug delivery / T.Doane, C.Burda // Adv. Drug Deliv. Rev.— 2013.— Vol.65, №5.— P.607–621.

Dreaden E.C. The golden age: gold nanoparticles for biomedicine / E.C.Dreaden, A.M.Alkilany, X.Huang et al. // Chem. Soc. Rev.— 2012.— Vol.41, №7.— P.2740 – 2779.

Dykman L.A. Gold nanoparticles in biology and medicine: recent advances and prospects / L.A.Dykman, N.G.Khlebtsov // Acta Naturae.— 2011.— Vol.3, №2.— P.34–55.

Gamaleia N.F. Photodynamic activity of hematoporphyrin conjugates with gold nanoparticles: experiments in vitro / N.F.Gamaleia, E.D.Shishko, G.A.Dolinsky et al. // Exp. Oncol.— 2010.— Vol.32, №1.— P.44–47.

Gamaleia N.F. Photodynamic activity of nanogold-doped Fotolon: free radicals versus singlet oxygen / N.F.Gamaleia, G.A.Dolinsky, E.D.Shishko et al. // Forum Immunopathol. Dis. Therap.— 2011.— Vol.2, №3.— P.237–246.

Ge J. Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability / J.Ge, Q.Zhang, T.Zhang et al. // Angew. Chem. Int. Ed.— 2008.— Vol.47, №46.— P.8924–8928.

Gil P.R. Composite nanoparticles take aim at cancer / P.R.Gil, W.J.Parak // ACS Nano.— 2008.— Vol.2, №11.— P.2200–2205.

Griffin J. Size- and distance-dependent nanoparticle surface-energy transfer method for selective sensing of hepatitis C virus RNA / J.Griffin, A.K.Singh, D.Senapati et al. // Chemistry.— 2009.— Vol.15, №2.— P.342–351.

Haley B. Nanoparticles for drug delivery in cancer treatment / B.Haley, E.Frenkel // Urol. Oncol.— 2008.— Vol.26, №1.— P.57–64.

Huang P. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy / P.Huang, J.Lin, S.Wang et al. // Biomaterials.— 2013.— Vol.34, №19.— P.4643–4654.

Huang X. The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers / X.Huang, X.J.Tian, W.L.Yang et al. // Phys. Chem. Chem. Phys.— 2013.

Jain P.K. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine / P.K.Jain, X.Huang, I.H.El-Sayed et al. // Acc. Chem. Res.— 2008.— Vol.41, №12.— P.1578 – 1586.

Jang B. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo / B.Jang, J.Y.Park, C.H.Tung et al. // ACS Nano.— 2011.— Vol.5, №2.— P.1086–1094.

Jang B. Photosensitizer-сonjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy / B.Jang, Y.Choi // Theranostics.— 2012.— Vol.2, №2.— P.190–197.

Jia X. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy / X.Jia, L.Jia // Curr. Drug Metab.— 2012.— Vol.13, №8.— P.1119–1122.

Jiang J. Effect of timing, dose and interstitial versus nanoparticle delivery of tumor necrosis factor alpha in combinatorial adjuvant cryosurgery treatment of ELT-3 uterine fibroid tumor / J.Jiang, J.Bischof // Cryo. Letters.— 2010.— Vol.31, №1.— P.50–62.

Jiang W. Nanoparticle-mediated cellular response is size-dependent / W.Jiang, B.Y.Kim, J.T.Rutka et al. // Nat. Nanotechnol.— 2008.— Vol.3, №3.— P.145–150.

Kessel D. Pharmacokinetics of N-aspartyl chlorin e6 in cancer patients // J. Photochem. Photobiol. B.— 1997.— Vol.39, №1.— P.81–83.

Khlebtsov B.N. Silver nanocubes and gold nanocages: fabrication and optical and photothermal properties / B.N.Khlebtsov, V.A.Khanadeev, I.L.Maksimova et al. // Nanotech. in Russia.— 2010.— Vol.5, №7-8.— P.454–468.

Kuo W.S. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy / W.S.Kuo, Y.T.Chang, K.C.Cho et al. // Biomaterials.— 2012.— Vol.33, №11.— P.3270–3278.

Lee D.E. Multifunctional nanoparticles for multimodal imaging and theragnosis / D.E.Lee, H.Koo, I.C.Sun et al. // Chem. Soc. Rev.— 2012.— Vol.41, №7.— P.2656–2672.

Liu Y. Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers / Y.Liu, M.K.Shipton, J.Ryan et al. // Anal. Chem.— 2007.— Vol.79, №6.— P.2221–2229.

Lkhagvadulam B. Synthesis and photodynamic activities of novel water soluble purpurin-18-N-methyl-D-glucamine photosensitizer and its gold nanoparticles conjugate / B.Lkhagvadulam, J.H.Kim, I.Yoon et al. // J. Porphyrins Phthalocyanines.— 2012.— Vol.16, №4.— P.331–340.

Lowery A.R. Immunonanoshells for targeted photothermal ablation of tumor cells / A.R.Lowery, A.M.Gobin, E.S.Day et al. // Int. J. Nanomedicine.— 2006.— Vol.1, №2.— P.149–154.

Lu F. Gold nanoparticles for diagnostic sensing and therapy / F.Lu, T.L.Doane, J.J.Zhu et al. //.— 2012.— Vol.393, №.1.— P.142–153.

Malik Z. Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells / Z.Malik, M.Dishi, Y.Garini // Photochem. Photobiol.— 1996.— Vol.63, №5.— P.608–614.

Moeno S. Synthesis and photophysical properties of a novel zinc photosensitizer and its gold nanoparticle conjugate / S.Moeno, E.Antunes, T.Nyokong et al. // J. Photochem. Photobiol. A.— 2011.— Vol., №2.— P.343–350.

Morgan M.T. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro / M.T.Morgan, Y.Nakanishi, D.J.Kroll et al. // Cancer Res.— 2006.— Vol.66, №24.— P.11913–11921.

Murray N.P. Differential expression of matrix metalloproteinase-2 expression in disseminated tumor cells and micrometastasis in bone marrow of patients with nonmetastatic and metastatic prostate cancer: theoretical considerations and clinical implications — an immunocytochemical study / N.P.Murray, E.Reyes, P.Tapia et al. // Bone Marrow Res.— 2012.— Vol.2012.— P.1–9.

Nativo P. Uptake and intracellular fate of surface-modified gold nanoparticles / P.Nativo, I.A.Prior, M.Brust // ACS Nano.— 2008.— Vol.2, №8.— P.1639–1644.

Nguyen K.T. Targeted nanoparticles for cancer therapy: promises and challenges // J. Nanomedic. Nanotechnol.— 2011.— Vol.2, №5.— P.1–2.

O’Neal D.P. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles / D.P.O’Neal, L.R.Hirsch, N.J.Halas et al. // Cancer Lett.— 2004.— Vol.209, №2.— P.171–176.

Oo M.K. 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer / M.K.Oo, X.Yang, H.Du et al. // Nanomedicine (Lond).— 2008.— Vol.3, №6.— P.777–786.

Paszko E. Nanodrug applications in photodynamic therapy / E.Paszko, C.Ehrhardt, M.O.Senge et al. // Photodiagnosis. Photodyn. Ther.— 2011.— Vol.8, №1.— P.14–29.

Peng Q. Localization of potent photosensitizers in human tumor LOX by means of laser scanning microscopy / Q.Peng, J.Moan, G.Farrants et al. // Cancer Lett.—1990.— Vol.53, №2-3.— P.129–139.

Peng Q. Subcellular localization, redistribution and photobleaching of sulfonated aluminum phthalocyanines in a human melanoma cell line / Q.Peng, G.W.Farrants, K.Madslien et al. // Int. J. Cancer.—1991.— Vol.49, №2.— P.290–295.

Prabhu V. Nanoparticles in drug delivery and cancer therapy: the giant rats tail / V.Prabhu, S.Uzzaman, V.M.B.Grace et al. // J. Cancer Ther.— 2011.— Vol.2, №3.— P.325–334.

Roberts W.G. In vitro photosensitization I. Cellular uptake and subcellular localization of mono-L-aspartyl chlorin e6, chloro-aluminum sulfonated phthalocyanine, and photofrin II / W.G.Roberts, M.W.Berns // Lasers Surg. Med.— 1989.— Vol.9, №2.— P.90–101.

Rosenkranz A.A. Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency / A.A.Rosenkranz, D.A.Jans, A.S.Sobolev // Immunol. Cell Biol.— 2000.— Vol.78, №4.— P.452–464.

Scully A.D. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts / A.D.Scully, R.B.Ostler, A.J.MacRobert et al. // Photochem. Photobiol.—1998.— Vol.68, №2.— P.199–204.

Sershen S.R. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery / S.R.Sershen, S.L.Westcott, N.J.Halas et al. // J. Biomed. Mater. Res.— 2000.— Vol.51, №3.— P.293–298.

Shukla R. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer / R.Shukla, N.Chanda, A.Zambre et al. // Proc. Natl. Acad. Sci. USA.— 2012.— Vol.109, №31.— P.12426–12431.

Srivatsan A. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy / A.Srivatsan, S.V.Jenkins, M.Jeon et al. // Theranostics.— 2014.— Vol.4, №2.— P.163–174.

Stuchinskaya T. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates / T.Stuchinskaya, M.Moreno, M.J.Cook et al. // Photochem. Photobiol. Sci.— 2011.— Vol.10, №5.— P.822–831.

Sun I.C. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging / I.C.Sun, J.H.Na, S.Y.Jeong et al. // Pharm. Res.— 2013.

Turkevich J. A study of the nucleation and growth processes in the synthesis of colloidal gold / J.Turkevich, P.C.Stevenson, J.Hillier // Discuss. Faraday Soc.— 1951.— Vol.11.— P.55–75.

Vankayala R. Metal nanoparticles sensitize the formation of singlet oxygen / R.Vankayala, A.Sagadevan, P.Vijayaraghavan et al. // Angew. Chem. Int. Ed. Engl.— 2011.— Vol.50, №45.— P.10640–10644.

Wang J. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy / J.Wang, G.Zhu, M.You et al. // ACS Nano.— 2012.— Vol.6, №6.— P.5070–5076.

Wang S. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy / S.Wang, R.Gao, F.Zhou et al. // J. Mater. Chem.— 2004.— Vol.14.— P.487–493.

Wieder M.E. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a «Trojan horse» / M.E.Wieder, D.C.Hone, M.J.Cook et al. // Photochem. Photobiol. Sci.— 2006.— Vol.5, №8.— P.727–734.

Wood S.R. The subcellular localization of Zn(II) phthalocyanines and their redistribution on exposure to light / S.R.Wood, J.A.Holroyd, S.B.Brown // Photochem. Photobiol.— 1997.— Vol.65, №3.— P.397–402.

Ye T.Y. Controlling the packing of gold nanoparticles with grafted liquid crystals / T.Y.Ye, X.F.Chen, K.Qian et al. // J. Nanopart. Res.— 2012.— Vol.14, №1055.— P.1–12.

Yoon I. Advance in photosensitizers and light delivery for photodynamic therapy / I.Yoon, J.Z.Li, Y.K.Shim // Clin. Endosc.— 2013.— Vol.46, №1.— P.7–23.

Zaruba K. Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy / K.Zaruba, J.Kralova, P.Rezanka et al. // Org. Biomol. Chem.— 2010.— Vol.8, №14.— P.3202–3206.

Zhao B. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles / B.Zhao, J.J.Yin, P.J.Bilski et al. // Toxicol. Appl. Pharmacol.— 2009.— Vol.241, №2.— P.163 – 172.

Published
2015-10-07
How to Cite
Штонь, І. О., & Гамалія, М. Ф. (2015). Gold nanoparticles as components for third generation photosensitizers for photodynamic thepapy of tumours. Photobiology and Photomedicine, 11(1, 2), 42-53. Retrieved from https://periodicals.karazin.ua/photomedicine/article/view/4076
Section
Photobiology and experimental photomedicine

Most read articles by the same author(s)