New approaches to improve efficacy and reduce side effects of phototherapy for neonatal hyperbilirubinemia using led and laser sources
Abstract
The article discusses the new opportunities for improving technology of phototherapy for neonatal jaundice using LED and laser sources in order to reduce the level of bilirubin in the blood of infants. It has been shown that several types of LEDs with emission spectrum corresponding to the long-wavelength slope of bilirubin absorption band can be used for therapeutic purposes. At the same time, the efficacy of phototherapy depend on not only from the position of the maximum in emission spectrum of the LEDs within bilirubin absorption band, but also on the spectral width of acting radiation. Based on the study of regularities of infl of optical radiation on the survival of animal cells in culture sensitized with bilirubin it has been concluded that the damaging eff cts are signifi ly reduced upon transition from quasi-monochromatic LED sources to lasers, emitting in the same spectral range. It allows to consider the modern semiconductor lasers emitting in blue and blue-green spectral regions as promising sources for development of phototherapeutic equipment for treating neonatal hyperbilirubinemia.
Downloads
References
Lamola AA. A pharmacologic view of phototherapy. Clin. Perinatol. 2016 June;43(2):259–76. https://doi.org/10.1016/j.clp.2016.01.004.
Novotny JF, Sedlacek F, editors. Bilirubin: Chemistry, Regulation and Disorder. New York: Nova Science Publishers. 2012. Plavskii VYu. Biophysical and technical aspects of phototherapy for neonatal hyperbilirubinemia; р. 1–65.
Plavskiĭ VYu, Tret’yakova AI, Mostovnikova GR. Phototherapeutic systems for the treatment of hyperbilirubinemia of newborns. J. Opt. Technol. 2014 June;81(6):341– 8. https://doi.org/10.1364/JOT.81.000341.
Xiong T, Qu Y, Cambier S, Mu D. The side effects of phototherapy for neonatal jaundice: what do we know? What should we do? Eur J Pediatr. 2011 October;170(10):1247–55. https://doi.org/10.1007/s00431- 011-1454-1.
Ramy N, Ghany EA, Alsharany W, Nada A, Darwish RK, Rabie WA. Jaundice, phototherapy and DNA damage in full-term neonates. J. Perinatol. 2016 Febru- ary;36(2):132–6. https://doi.org/10.1038/jp.2015.166
Tatli MM, Minnet C, Kocyigit A, Karadag A. Phototherapy increases DNA damage in lymphocytes of hyperbilirubinemic neonates. Mutat. Res. 2008 June 30;654(1):93–5. https://doi.org/10.1016/j.mrgentox.2007.06.013.
Stevenson DK, Wong RJ, Arnold CC, Pedroza C, Tyson JE. Phototherapy and the risk of photo-oxidative injury in extremely low birth weight infants. Clin. Perinatol. 2016 June;43(2):291–5. https://doi.org/10.1016/j. clp.2016.01.005.
Wickremansinghe AC, Kuzniewicz MW, Grimes BA, McCullogh CE, Newman TB. Neonatal phototherapy and infantile cancer. Pediatrics. 2016 June;137(6):e20151353. https://doi.org/10.1542/peds.2015-1353.
Morris BH, Oh W, Tyson JE, Stevenson DK, Phelps DL, O’Shea TM. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 2008 October 30;359:1885 –96. https://doi. org/10.1056/NEJMoa0803024.
Tyson JE, Pedroza C, Langer J, Green C, Morris B, Stevenson D. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J. Perinatol. 2012 September;32(9):677–84. https://doi.org/10.1038/ jp.2012.64.
Arnold C, Pedroza C, Tyson JE. Phototherapy in ELBW newborns: does it work? Is it safe? The evidence from randomized clinical trials, Semin. Perinatol. 2014 November;38(7):452–64. https://doi.org/10.1053/j.sem- peri.2014.08.008.
Plavskii VYu, Mostovnikov VA, Ryabtsev AB, Mostovnikova GR, Plavskaya LG, Nikeenko NK, et al. Apparatus for low-level laser therapy: Modern status and development trends. J. Opt. Technol. 2007 April;74(4):246–57. https://doi.org/10.1364/JOT.74.000246.
Mosmann T. Rapid colorimetric assay for cellular growth and survivals: application to proliferation and cytotoxity assay. J Immunol Methods. 1983 16 December;65(1-2):55–63. https://doi.org/10.1016/00221759(83)90303-4.
Plavskii VYu, Mostovnikov VA, Mostovnikova GR, Tret’yakova AI. Spectral fluorescence and polariza- tion characteristics of Z,Z-bilirubin IXα. J. Appl. Spectrosc. 2007 January;74(1):120–32. https://doi. org/10.1007/s10812-007-0019-6.
Kozlenkova OA, Plavskaya LG, Mikulich AV, Leusenko IA, Tretyakova AI, Plavskii VYu. Photodamage of the cells in culture sensitized with bilirubin. J. Physics: Conf. Series; 2016 August;741(1):012063. https://doi. org/10.1088/1742-6596/741/1/012063.
Plavskii VYu, Mostovnikov VA, Tret’yakova AI, Mostovnikova GR. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions. J. Appl. Spectrosc. 2008 May;75(3):407–19. https://doi. org/10.1007/s10812-008-9061-2.
Böhm F, Drygalla F, Charlesworth P, Böhm K, Truscott TG, Jokiel K. Bilirubin phototoxicity to human cells by green light phototherapy in vitro. Photochem. Photobiol. 1995 December;62(6):980–3. https://doi. org/10.1111/j.1751-1097.1995.tb02397.
Plavskii VY, Mikulich AV, Leusenko IA, Tretyakova AI, Plavskaya LG, Serdyuchenko NS, et al. Spectral range optimization to enhance the effectiveness eness of phototherapy for neonatal hyperbilirubinemia. J. Appl. Spectrosc. 2017 June;84(1): 92–102. https://doi.org/10.1007/s10812- 017-0433-3.