To question of increasing of efficiency of photodynamic therapy of tumors on the basis of multispectral treatment and diagnostic device

Keywords: photodynamic therapy, photosensitizer, fiber-optic channel, optical radiation, power density, oxygenation, fluorescence

Abstract

Damage to tumor cells as a result of photodynamic therapy is a multi-stage process, the effectiveness of which depends on a number of factors, and in particular on the properties of the photosensitizer used and the parameters of light irradiation of the tissues that it has colored. Nevertheless, the experience gained over decades of using photodynamic therapy in the clinic indicates a high heterogeneity of the tumor response to photodynamic therapy. Thus, there is an urgent need to create hardware complexes capable of real-time record- ing the effectiveness of photodynamic therapy monitoring by monitoring its key parameters, and, if possible, automatically adjust the scheme of the procedure, contributing to the creation of an individualized approach in the treatment of neoplasms.

The paper considers a method for increasing the efficiency of the photodynamic therapy method by devel- oping a prototype of such a diagnostic and treatment unit based on a combination of the principles of optical exposure and optical diagnostics. The device provides the possibility of non-invasive monitoring of the accu- mulation kinetics of photosensitizer in the tumor zone; determine the contrast of its accumulation relative to healthy tissues; control of tumor oxygenation at all stages of photodynamic therapy ; and also the effect on the tumor by optical radiation with a wavelength corresponding to the absorption peak used by the photosensitizer. From the values of these parameters, the course of the final cascade of cytotoxic and inflammatory reactions in the tumor and the mechanism of restoring damage after therapy are mainly dependent.

Downloads

Download data is not yet available.

References

Benov L. Photodynamic therapy: Current status and future direction. Med. Princ. Pract. 2016;24(1):14-28.

Chin KK, Trevithick-Sutton CC, McCallum J, Jockusch S, Turro NJ, Scaiano JC, et al. Quantitative determination of singlet oxygen generated by excited state aromatic amino acids, proteins, and immunoglobulins. Journ Amer Chem Soc. 2008;130(22):6912-13.

Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part one - photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;1:279-93.

Berg K, Selbo P, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. Journ of Microscopy. 2005;218 (Part 2):133-47.

Foster TH, Murant RS, Bryant RG, Knox RS, Gibson SL, Hilf R. Oxygen consumption and diffusion effects in pho- todynamic therapy. Radiat Res. 1991;126(3):296-303.

Seshadri M, Bellnier DA, Vaughan LA, Spernyak JA, Ma- zurchuk R, Foster TH, et al. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin Cancer Res. 2008;14(9):2796–805.

Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel). 2011;3(2):2516–39.

Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1-21.

Гамалея НФ. Фотодинамическая терапия опухолей: От синицы в руках к журавлю в небе. Эксперимен- тальные и клинические аспекты фотодинамической терапии: Материалы научно-практического семинара с международным участием; 15-16 марта 2013. Чер- кассы: Вертикаль; 2013, с. 3–9.

Жорина ЛВ, Змиевской ГН, Семчук ИП, Филатов ВВ. Исследование влияния временных параметров ла- зерного излучения на характеристики фотодинами- ческой терапии. Медицинская техника. 2012;6:32-6.

Гольдман МП, редактор. Фотодинамическая терапия. Москва: Рид Элсивер;2010. 180 с.

Стратонников А, Меерович ГБ, Рябова АВ, Савелье- ва ТА, Лощенов ВБ. Использование спектроскопии обратного диффузного отражения света для монито- ринга состояния тканей при фотодинамической тера- пии. Квантовая электроника. 2006;36(12):1103–09.

Далидович АА, Марченко ЛН, Федулов АС, Труха- чева ТВ, Кривоносов ВВ, Зорина ГЕ, и др. Фотоди- намическая терапия «Фотолоном» миопической макулопатии. Минск: Парадокс;2012. 224 с.

Тучин ВВ. Оптическая биомедицинская диагностика В 2 томах. Том 1. Москва: Физматлит; 2007. 560 с.

Kholin VV, Chepurna OM, Shton’ IO, Voytsehovich VS, Pavlov SV, Gamaleia NF, et al. Methods and fiber optics spectrometry system for control of photosensitizer in tissue during photodynamic therapy. Photonics Appli- cations in Astronomy, Communications, Industry, and High-Energy Physics Experiments. 2016. Proc. SPIE. P.10031-10038; doi:10.1117/12.2249259.

Chepurna O, Shton’ I, Kholin V, Voytsehovich V, Pop- ov V, Pavlov S, et al. Photodynamic therapy with la- ser scanning mode of tumor irradiation. Optical Fi- bers and their Applications. 2015. Proc. SPIE 98161F; doi:10.1117/12.2229030.

Published
2018-12-29
How to Cite
Холин, В. В., Войцехович, В. С., Егоров, Р. В., Ивасенко, В. И., Петраш, Н. Т., Петрушко, Ю. А., Чепурная, О. Н., Штонь, И. А., Павлов, С. В., & Гамалея, Н. Ф. (2018). To question of increasing of efficiency of photodynamic therapy of tumors on the basis of multispectral treatment and diagnostic device. Photobiology and Photomedicine, 15(2(25), 55-62. https://doi.org/10.26565/2076-0612-2018-25-06
Section
Photobiology and experimental photomedicine