Апроксимаційні властивості узагальнених Fup-функцій
Анотація
Розглянуто узагальнені Fup-функції. Доведено теорему про майже-тригонометричний базис. Побудовано простори лінійних комбінацій зсувів узагальнених Fup-функцій і отримано верхню оцінку найкращого наближення цими просторами класів періодичних диференційованих функцій за нормою $L_2[-\pi,\pi]$.
Завантаження
Посилання
Rvachev V.A. Compactly supported solutions of functional–differential equations and their applications. // Russian Math. Surveys, 1990. – 45. – P. 87–120.
Rvachev V.L., Rvachev V.A. Non-classical methods of approximation theory in boundary value problem (in Russian). – K.: Naukova Dumka, 1979. – 196 p.
Makarichev V.A. Approximation of periodic functions by mups(x). // Math. Notes, 2013. – 93. – P. 858–880.
Rvachev V.L., Rvachev V.A. A certain finite function (in Ukrainian). // Proc. Ukr. SSR Acad. Sci., Ser. A., 1971. – 8. – P. 705–707.
Rvachev V.A., Starets G.A. Some atomic functions and their apllications (in Ukrainian). // Proc. Ukr. SSR Acad. Sci., Ser. A., 1983. – 11. – P. 22–24.
Makarichev V.A. Asymptotics of the basis functions of generalized Taylor series for the class H;2. // Math. Notes, 2011. – 89. – P. 689–705.
Dyn N., Ron A. Multiresolution analysis by infinitely differentiable compactly supported functions. // Appl. Comput. Harmon. Anal., 1995. – 2. – P. 15–20.
Cooklev T., Berbecel G.I., Venetsanopoulos A.N. Wavelets and differentialdilatation equations. // IEEE Transactions on signal processing, 2000. – 48. – P. 670–681.
Charina M., Stockler J. Tight wavelet frames for irregular multiresolution analysis. // Appl. Comput. Harmon. Anal., 2008. – 25. – P. 98–113.
Makarichev V.A. Applications of the function mups(x). // Progress in analysis. Proceedings of the 8th congress of the International Society for Analysis, its Applications, and Computation (ISAAC), 2012. – 2. – P. 297–304.
Makarichev V.A. The function mups(x) and its applications to the of generalized Taylor series, approximation theory and wavelet theory. // In book: Contemporary problems of mathematics, mechanics and computing sciences. – Kharkiv: Apostrophe, 2011. – P. 279–287.
Brysina I.V., Makarichev V.A. Atomic wavelets. // Radioelectronic and Computer Systems, 2012. – 53. – P. 37–45.
Rvachova T.V. On a nonstationary system of infinitely differentiable wavelets with compact support (in Russian). // Visn. Hark. nac. univ. im. V.N. Karazina, Ser.: Mat. prikl. mat. meh., 2011. – 967. – P. 63–80.
Lazorenko O.V. The use of atomic functions in the Choi–Williams analysis of ultrawideband signals. // Radioelectronics and Communications Systems, 2009. 52. – P. 397–404.
Ulises Moya-Sanchez E., Bayro-Corrochano E. Quaternionic analytic signal using atomic functions. // Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, 2012. – 7441. – P. 699–706.
Gotovac H., Andricevic R., Gotovac B. Multi-resolution adaptive modeling of groundwater flow and transport problems. // Adv. Water Resour., 2007. – 30. – P. 1105–1126.
Gotovac H., Cvetkovic V., Andricevic R. Adaptive Fup multi-resolution approach to flow and advective transport in heterogeneous porous media. // Adv. Water Resour., 2009. – 32. – P. 885–905.
Gotovac H., Gotovac B. Maximum entropy algorithm with inexact upper entropy bound based on Fup basis functions with compact support. // J. Comput. Phys., 2009. – 228. – P. 9079–9091.
Basarab M.A. Periodic atomic quasiinterpolation. // Ukrainian Math. J., – 2001. – 53. – P. 1728 – 1734.
Stoyan Y.G., Protsenko V.S., Man’ko G.P., Goncharyuk I.V., Kurpa L.V., Rvachev V.A., Sinekop N.S., Sirodzha I.B., Shevchenko A.N., Sheiko T.I. The theory of R-functions and current problems of applied mathematics (in Russian). – Kiev: Naukova Dumka, 1986. – 264 p.
RvachovaT.V. On a relation between the coefficients and sum of the generalized Taylor series. // Mathematical physics, analysis and geometry, 2003. – 10. – P. 262–268.
Rvachova T.V. On the asymptotics of the basic functions of a generalized Taylor series (in Russian). // Visn. Hark. nac. univ. im. V.N. Karazina, Ser.: Mat. prikl. mat. meh., 2003. – 602. – P. 94–104.
Rvachova T.V. On the rate of approximation of the infinitely differentiable functions by the partial sums of the generalized Taylor series (in Russian). // Visn. Hark. nac. univ. im. V.N. Karazina, Ser.: Mat. prikl. mat. meh., 2010. – 931. – P. 93–98.
Makarichev V.A. On the asymptotics of the basic functions of a generalized Taylor series for some classes of infinitely differentiable functions (in Russian). // Del’nevostochniy mathematicheskiy zhurnal, 2011. – 11. – P. 56–75.
Brysina I.V., Makarichev V.A. On the asymptotics of the generalized Fupfunctions. // Adv. Pure Appl. Math., 2014. – 5. – P. 131–138.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі. (Attribution-Noncommercial-No Derivative Works licence).
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).