Модулі Бішопа-Фелпса-Болобаша в рівномірно неквадратних банахових простірах

Ключові слова: теорема Бішопа-Фелпса, рівномірно неквадратні простори.

Анотація

Чіка, Кадець, Мартін, Соловйова нещодавно довели, що модуль Бішопа-Фелпса-Болобаша $\Phi^S_X$ банахового простора $X$ може бути оцінений зверху через параметр рівномірної неквадратності $\alpha(X)$: $\Phi^S_X(\varepsilon) \leq \sqrt{2\varepsilon}\,\sqrt{1-\frac{1}{3}\alpha(X)}$. У цій короткій статті ми покажемо, що права частина оцінки не може бути змінена на щось меньше, ніж $\sqrt{2\varepsilon}\,\sqrt{1-\alpha(X)}$.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

E. Bishop and R. R. Phelps. A proof that every Banach space is subreexive// Bull. Amer. Math. Soc., 1961. - 67. - P. 97-98.

B. Bollobas. An extension to the theorem of Bishop and Phelps// Bull. London Math. Soc., - 1970. - 2. - P. 181-182.

B. Cascales, V. Kadets, and A. J. Guirao. A Bishop-Phelps-Bollobs type theorem for uniform algebras// Advances in Mathematics, 2013. - 240. -
P. 370-382.

M. Chica, V. Kadets, M. Martin, S. Moreno-Pulido, and F. Rambla-Barreno. Bishop-Phelps-Bollobaas moduli of a Banach space// J. Math. Anal. Appl., 2014. - 412 no. 2. - P. 697-719.

M. Chica, V. Kadets, M. Martin, and M. Soloviova. Two reffnements of the Bishop-Phelps-Bollobaas modulus// Banach J. Math. Anal., 2015. - 9 No. 4.
- P. 296-315.

J. Diestel. Geometry of Banach spaces// Lecture notes in Math. Springer-Verlag, Berlin, 1975. - 485. - 282 p.

R.C. James. Uniformly non-square Banach spaces// Ann. Math. (2), 1964. -80. - P. 542-550.

V. Kadets, M. Soloviova. A modiffed Bishop-Phelps-Bollobas theorem and its sharpness//Submitted to Matematychni Studii.

R. R. Phelps. Support Cones in Banach Spaces and Their Applications// Adv. Math., 1974. - 13. - P. 1-19.

R. R. Phelps. Convex functions, monotone operators and dfferentiability (second edition)// Lecture Notes in Math. Springer-Verlag, Berlin, 1993. -
1364.
Цитовано
Як цитувати
Soloviova, M. V. (1). Модулі Бішопа-Фелпса-Болобаша в рівномірно неквадратних банахових простірах. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Maтeмaтикa, приклaднa мaтeмaтикa i механiка», 81, 4-9. https://doi.org/10.26565/2221-5646-2015-81-01
Розділ
Статті