Дискретна математична модель процесу розсіювання хвиль періодичною імпедансною ґраткою

  • Vladimir D. Dushkin Національна академія Національної гвардії України https://orcid.org/0000-0002-5143-7945
  • Stanislav Zhuchenko Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0002-1946-7044
  • Oleksii V. Kostenko Фізико-технічний інститут низьких температур імені Б. І. Вєркіна Національної академії наук України https://orcid.org/0000-0002-9471-8894
Ключові слова: математична модель, імпедансні структури, чисельний експеримент

Анотація

У статті розглядається спосіб чисельного моделювання процесу розсіювання хвиль періодичною імпедансною граткою. У разі гармонійної залежності поля від часу і однорідності структури уздовж деякої осі тривимірна задача зводиться до розгляду двох двовимірних задач для компонент Е-поляризованої і Н-поляризованої хвилі. Шукана єдина ненульова компонента електричного поля, створеного падаючою Е-поляризованої хвилею, є рішенням крайової задачі для рівняння Гельмгольца з граничними умовами Робена.
З фізичної постановки задачі випливає, що її рішення повинні задовольняти умові квазіперіодичності Флоке, умовою скінченості енергії в будь-який обмеженій області площині. Також різниця повного і падаючого поля повинна задовольняти умові випромінювання Зоммерфельда. Слідуючи ідеям робіт Ю.В. Ганделя, за допомогою методу параметричних уявлень інтегральних операторів крайова задача зводиться до двох систем інтегральних рівнянь. Перша система складається з сингулярних рівнянь першого роду з додатковими інтегральними умовами. Друга система складається з граничних інтегральних рівнянь Фредгольма другого роду з логарифмічною особливістю в підінтегральній функції. Був проведений чисельний експеримент для випадків різного розташування стрічок.
Обчислення проводилися для моделі на основі сингулярних рівнянь і моделі на основі гіперсінгулярних рівнянь. Вони показали близькість отриманих результатів у діапазоні досліджуваних параметрів.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A. S. Il'insky, A. Ja. Slepjan, G. Ja. Slepjan, Propagation, diffraction and dissipation of electromagnetic waves. 1993. London (UK): The IEE and Peter Peregrinous Ltd., Electromagnetic Waves, Ser. 36. 275 p.

O. O. Bulatsyk, B. Z. Katsenelenbaum, Yu. P. Topolyuk, N. N. Voitovich. Phase Optimization Problems: Applications in Wave Field Theory. 2010. Hoboken, NJ: Wiley-VCH, Weinheim, 321 p.

T. L. Zinenko, A. I. Nosich. Wave Scattering and Absorption by Flat Gratings of Impedance Strips, IEEE Transactions on Antennas and Propagation, - 2006. - V. 54. - P. 2088-2095.

V. F. Kravchenko. The electrodynamics of superconducting structures. The theory, algorithms and computational methods, 2006. Fizmatlit, Moscow, 280 p.

Yu. Penkin, V. Katrych, M. Nesterenko, S. Berdnik. Coupling of Two Rectangular Waveguides Through a Slot With an Impedance Membrane, VII th International Conference on Mathematical Methods in Electromagnetic Theory. Kyiv, Ukraine, - 2018. - P. 140-143.

G. I. Koshovy. Mathematical models of acoustic wave scattering by impedance strip, Proceedings of the XXII-nd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2017), - 2017. - P. 71-74.

Yu. V. Gandel', V.F. Kravchenko, V.I. Pustovoit. Scattering of electromagnetic waves by a thin superconducting band, Doklady Math, - 1996. - 54. - no. 3. - P. 959-961.

Yu. V. Gandel, V. F. Kravchenko, N. N. Morozova. Electromagnetic wave diffraction on a lattice of thin superconducting band, Electromagnetic Waves and Electronic Systems, - 1997. - 2, no. 1. - P. 4-15.

Yu.V. Gandel. Parametric Representations of Integral and Psevdodifferential Operators in diffraction Problems, Proceedings of the X International Conference on Mathematical Methods in Electromagnetic Theory, Dnipropetrovsk, Ukraine, 2004. - P.57-62.

Yu. V. Gandel. Boundary-Value Problems for the Helmholtz Equation and their Discrete Mathematical Models, Journal of Mathematical Sciences, Springer Science+Business Media, Inc., - 2010. - Vol. 171, no. 1. - P. 74-88.

Y.V. Gandel, V.D. Dushkin. The method of parametric representations of integral and pseudo-differential operators in diffraction problems on electro-dynamic structures, Proceedings of the International Conference Days on Diffraction DD, St. Petersburg, - 2012. - P.~76-81.

I. K. Lifanov. Singular integral equations and discrete vortices. 1996. - Utrecht (the Netherlands): VSP VB, 475 p.

Yu.V. Gandel, V.D. Dushkin. Mathematical models of two-dimensional diffraction problems: Singular integral equations and numerical methods of discrete singularities method. 2012. Academy of IT of the MIA of Ukraine, Kharkiv, - 544~p. (in Russian).

V.D. Dushkin. Mathematical models of two-dimensional diffraction problems, Proceedings of the VI th International Conference on Mathematical Methods in Electromagnetic Theory (MMET'96), Lviv, 1996. V. 1, - P. 483-486.

V.A. Shcherbina, G.I. Zaginaylov, S.V. Zhuchenko. Numerical theory of excitation of axisymmetric open-ended finite length slow wave structure on the basis of the boundary singular integral equation method, VII th International Conference on Mathematical Methods in Electromagnetic Theory (MMET'98), Kharkov, Ukraine, - 1998. - V. 1, - P. 263-265.

G.I. Zaginaylov, V.D. Dushkin, V. Korostyshevski, P.V. Turbin. Modeling the beam excitation of planar waveguide with rectangular irregularities, Proceedings of the VII th International Conference on Mathematical Methods in Electromagnetic Theory (MMET'98); Kharkov, Ukraine, - 1998 - V. 1, - P. 409-410.

Yu.V. Gandel, G.L. Sidel'nikov. The method of integral equations in the third boundary value problem of diffraction on a bounded grating over a flat screen, - Differential Equations, - 1999.- 35, no.9. - P. 1169-1175.

V.D. Dushkin. Solution of a two-dimensional diffraction problem with boundary conditions of the third kind on the lateral surface of waveguide channels, Reports of the NAS of Ukraine, - 1999.- no. 9 - P. 11-15. (in Russian).

Y.V. Gandel, V.D. Dushkin, G.I. Zaginaylov. New numerical-analytical approach in the theory of excitation of super dimensional electro dynamical structures Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), - 2000.- V. 54, 7. - P. 36-48.

V.D. Dushkin. Application of the singular integral transform method to the solution of the two-dimensional problem of diffraction of electromagnetic waves from a superconducting layer with rectangular waveguide channels, Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), - 2001. - V. 56, Issue 2. - P. 78-85.

A. A. Nosich, Y. V. Gandel. Numerical analysis of quasioptical multi-reflector antennas in 2-D with the method of discrete singularities, IEEE Transactions on Antennas and Propagation, - 2007. - V. 57, no. 2. - P. 399-406.

Yu.V. Gandel, V.D. Dushkin. Mathematical models based on SIE 2D diffraction problems on reflective multilayer periodic structures, Part I. The case of E-polarization, Scientific statements. Series: Mathematics. Physics. Belgorod State National Research University, - 2011.- V. 5 (100), 2.- P. 5-16. (in Russian).

Bulygin, A.I. Nosich, Y.V. Gandel. Nystrom-type method in three-dimensional electromagnetic diffraction by a finite PEC rotationally symmetric surface, IEEE Transactions on Antennas and Propagation, - 2012. - 60 (10). - P. 4710-4718.

S.V. Zhuchenko. Numerical model diffraction of the plane electromagnetic wave onto axiallysymmetric parabolic reflector, Bulletin of V. Karazin Kharkiv National University, Series "Mathematical Modelling. Information Technology. Automated Control Systems", - 2013.- Issue 22, no. 1063 - P. 63-71. (in Russian).

S.V. Zhuchenko. Discrete mathematical model of electromagnenic wave 3D diffraction on axially symmetric reflector, Bulletin of V. Karazin Kharkiv National University, Series "Mathematical Modelling. Information Technology. Automated Control Systems", - 2013. - Issue 23, no. 1089 - P. 50-68. (in Russian).

K. V. Nesvit. Scattering and Diffraction of TM Modes on a Grating Consisting of a Finite Number of Pre-Fractal Thin Impedance Strips, Proceedings of the 43rd European Microwave Conference (EuMC). - Nuremberg, Germany, - 6-11 October 2013. - P. 1143-1146.

V.D. Dushkin. Mathematical Models of Plane Wave Scattering on Multilayer Impedance Structures, Visnyk of the Lviv University. Series "Applied Mathematics and Computer Science", - 2013. - 20. - P. 69-76.

Y.V. Gandel, V.D. Dushkin. The boundary integral equations of the third boundary-value problem for the Helmholtz equation in the $R^2_{+}$ with plane-parallel slits, Reports of the NAS of Ukraine, - 2014. - no. 8 - P. 14-19.

K. V. Nesvit. Scattering and Propagation of the TE/TM Waves on Pre-Fractal Impedance Grating in Numerical Results, Proceedings of 8th European Conference on Antennas and Propagation (EuCAP), - Hague, Netherlands, 6-11 April 2014. - P. 3349- 3353.

O. V. Kostenko. Mathematical model of wave scattering by an impedance grating, Cybernetics and systems analysis, - 2015. - V. 51, no. 3. - P. 344-360.

S.V. Dukhopelnikov. Inhomogeneities in the antenna cavity and the diffractive properties of antennas of a special form Numerical analysis, Part 1, Bulletin of V. Karazin Kharkiv National University, Series "Mathematical Modelling. Information Technology. Automated Control Systems", - 2016. - 32. - P. 25-34.

O. V. Kostenko. A numerical method for solving a system of hypersingular integral equations of the second kind, Cybernetics and systems analysis, - 2016. -V. 52, no. 3. P. 394-407.

Yu. V. Gandel, V. D. Dushkin. Mathematical Model of Scattering of Polarized Waves on Impedance Strips Located on a Screened Dielectric Layer, Journal of Mathematical Sciences, Springer US, - 2016. - P. 156-166.

S. V. Dukhopelnykov. Control of backscattering of H-polarized plane wave by a circular dielectric rod with partial graphene cover, Proc. Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2018), Tbilisi, - 2018. - P. 51-54.

S. V. Dukhopelnykov, R Sauleau, M Garcia-Vigueras, A.I. Nosich. "Combined plasmon-resonance and photonic-jet effect in the THz wave scattering by dielectric rod decorated with graphene strip, J. Appl. Phys. - 2019. - V. 126, no. 2 - 023104.

V.D. Dushkin, S.V. Zhuchenko, O.V. Kostenko. Numerical analysis of wave scattering by periodic systems of impedance tapes, Proc. Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2019), Lviv, - 2019.- p. 112-116.

O. V. Kostenko. Numerical method for the solution of a hypersingular integral equation of a second kind, Ukrainian mathematical journal, - 2014. - V. 65, no. 9. - P. 1373-1383.

V.D. Dushkin. The Justification of Numerical Solution of Boundary Integral Equations of Wave Scattering Problems on Impedance Lattice, Visnyk of V.N.Karazin Kharkiv National University, Ser. "Mathematics, Applied Mathematics and Mechanics", - 2014. - 69. - P. 20-28.

Yu. V. Gandel ,V.D. Dushkin. The Approximate Method for Solving the Boundary Integral Equations of the Problem of Wave Scattering by Superconducting Lattice, American Journal of Applied Mathematics and Statistics, Science and Education Publishing, - 2014. - 2.6. - P. 369-375

V. D. Dushkin. Approximate solving of the third boundary value problems for Helmholtz equations in the plane with parallel cuts, Zh. Mat. Fiz. Anal. Geom, - 2017. - 13:3 - P. 254-267.

Опубліковано
2019-12-23
Цитовано
Як цитувати
Dushkin, V. D., Zhuchenko, S., & Kostenko, O. V. (2019). Дискретна математична модель процесу розсіювання хвиль періодичною імпедансною ґраткою. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Maтeмaтикa, приклaднa мaтeмaтикa i механiка», 90, 4-25. https://doi.org/10.26565/2221-5646-2019-90-01
Розділ
Статті