Усереднені тензор провідності та функція поглинання локально-періодичного пористого середовища
Анотація
Вивчається процес стаціонарної дифузії в локально-періодичному пористому середовищі з нелінійним поглинанням на межі пір. Цей процес описується крайовою задачею для еліптичного рівняння, яке розглядається в складній перфорованій області, з нелінійною третьою крайовою умовою на межі перфорації. З причини малості локального масштабу пористості середовища і складності перфорованої області, безпосередній розв'язок таких крайових задач практично неможливий. Тому природний підхід в цій ситуації полягає в дослідженні асимптотичної поведінки розв'язку, коли масштаб мікроструктури прямує до 0, і перехід до усередненої макроскопічної моделі процесу, що розглядається вже в усій області без урахування перфорації. Усередненню рівняння дифузії в широкому класі не періодично перфорованих областей: сильно-зв'язних областях, який включає в себе і локально-періодично перфоровані області, були присвячені наші більш ранні роботи. У цих роботах була отримана усереднена модель, коефіцієнти якої виражаються через «мезоскопічні» (локальні енергетичні) характеристики середовища, що визначаються в малих кубах, розміри яких, тим не менш, значно більше масштабу мікроструктури. У цих роботах теореми збіжності доводилися за умов існування граничних щільностей «мезоскопічних» характеристик, виконання яких показати в загальному випадку дуже важко, але в ряді конкретних ситуацій це можна зробити. У даній роботі ми показуємо виконання цих умов і, досліджуючи їх, отримуємо явні формули для ефективних характеристик локально-періодичного пористого середовища: тензора провідності і функції поглинання.
Завантаження
Посилання
B. Cabarrubias, P. Donato. Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary condition, Appl. Anal. - 2012. - Vol. 91, No. 6. - P. 1111-1127.
B. Calmuschi, C. Timofte. Upscaling of Chemical Reactive Flows in Porous Media, 'Caius Iacob' Conference on Fluid Mechanics & Texnical Applications, Bucharest, Romania. - 2005. - P. 1-9.
D. Cioranescu, P. Donato. On Robin problems in perforated domains, Math. Sci. Appl. - 1997. - No. 9. - P. 123-135.
D. Cioranescu, P. Donato, R. Zaki. The periodic unfolding method in perforated domains, Portugaliae Math. - 2006. - Vol. 63, No.4. - P. 467-496.
C. Conca, J. Diaz, A. Linan, C. Timofte. Homogenization in chemical reactive floes, Electron. J. Differ. Equ. - 2004. - No.40. - P. 1-22.
C. Conca, J. Diaz, A. Linan, C. Timofte. Homogenization results for chemicalreactive flows through porous media, New Trends in Continuum Mechanics. - 2005. - P. 99-107.
J. Diaz. Two problems in homogenization of porous media, Extracta Mathematica. - 1999. - No. 14. - P. 141-155.
W. Jager, O.A. Oleinik, A.S. Shamaev. On Homogenization of Solutions of Boundary Value Problem for the Laplace Equation in Partially Perforated Domain with the Third Boundary Type Condition on the Boundary of Cavities, Trudy Mosk. Math. Soc. - 1997. - Vol. 58. - P. 187- 223.
T.A. Mel'nyk, O.A. Sivak. Asymptotic analysis of a boundary-value problem with the nonlinean multiphase interactions in a perforated domain, Ukr. Math. Journal. - 2009. - Vol. 61, No. 4. - P. 494-512.
T.A. Mel'nyk, O.A. Sivak. Asymptotic approximations for solutions to quasilinear and linear elliptic problems with dierent perturbed boundary conditions in perforated domains, Asymptot. Anal. - 2011. - Vol. 75. - P. 79-92.
C. Timofte. Homogenization in Nonlinear Chemical Reactive Flows, Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istambul, Turkey, May 27-29. - 2006. - P. 250-255.
V.A. Marchenko, E.Ya. Khruslov. Homogenization of Partial Differential Equations. - Birkhauser Boston, 2006. - 401 p.
M.V. Goncharenko, L.A. Khilkova. Homogenized model of diusion in porous media with nonlinear absorption on the boundary, Ukr. Math. Journal. - 2016. - Vol. 67, No. 9. - P. 1349-1366.
E.Ya. Khruslov, L.O. Khilkova, M.V, Goncharenko. Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domains, J. Math. Phys. Anal. Geom. - 2017. - Vol. 13, No. 3. - P. 1-31.
M.V. Goncharenko, L.A. Khilkova. Homogenized model of diffusion in a locally periodic porous medium with nonlinear absorption at the boundary, Reports of NAS of Ukraine. - 2016. - No. 6. - P. 15-19.
G.A. Chechkin, A.L. Piatnitski. Homogenization of Boundary-Value Problem in a Locally Periodic Perforated Domain, Appl. Anal. - 1999. - Vol. 71(1-4). - P. 215- 235.
S.G. Mikhlin. Linear partial dierential equations. - M.: Vysshaya shkola, 1977. - 431 p.
B.A. Dubrovin, S.P. Novikov, A.T. Fomenko. Modern geometry. Methods and applications. - M.: Nauka, 1986. - 760 p.
L.A. Khilkova. The smooth dependence of the solution of the Neumann boundary-value ''cell'' problem on the parameters of a domain, Reports of NAS of Ukraine. - 2014. - No. 4(8). - P. 32-36.
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution-NonCommercial-NoDerivatives 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі. (Attribution-Noncommercial-No Derivative Works licence).
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).