Plasticity of the unit ball of $\ell_1$

Keywords: non-expansive map, unit ball, plastic space

Abstract

In the recent paper by Cascales, Kadets, Orihuela and Wingler it is shown that for every strictly convex Banach space $X$ every non-expansive bijection $F: B_X \to B_X$ is an isometry. We extend this result to the space $\ell_1$, which is not strictly convex.

Downloads

Download data is not yet available.

References

Brouwer L.E.J. Beweis der Invarianz des n-dimensionalen Gebiets // Mathematische Annalen. -- 1912. -71. -- P.305-315.

Cascales B., Kadets V., Orihuela J., Wingler E.J. Plasticity of the unit ball of a strictly convex Banach space, to appear
in: Revista de la Real Academia de Ciencias Exactas, F\'{\i}sicas y Naturales. Serie A. Matem\'aticas
http://dx.doi.org/10.1007/s13398-015-0261-3}{DOI: 10.1007/s13398-015-0261-3

Freudenthal H., Hurewicz W. Dehnungen, Verk\"urzungen, Isometrien // Fund. Math. - 1936. -26. - P.120--122.

Kulpa, W. Poincar\'e and domain invariance theorem // Acta Univ. Carolin. Math. Phys. - 1998. - 39. - no.1-2, P.127-136.#

Mankiewicz P. On extension of isometries in normed linear spaces // Bull. Acad. Polon. Sci., S\'er. Sci. Math. Astronom. Phys. - 1972. - 20. -- P.367 --371.

Naimpally S.A., Piotrowski Z., Wingler E.J. Plasticity in metric spaces // J. Math. Anal. Appl. -- 2006 . - 313. - P.38--48.
Published
2016-09-23
Cited
How to Cite
KadetsV. М., & Zavarzina, O. O. (2016). Plasticity of the unit ball of $\ell_1$. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 83, 4-9. https://doi.org/10.26565/2221-5646-2016-83-01
Section
Статті