Стійкість безумовних розкладів Шаудера у гільбертових просторах
Abstract
Отримано теорему стійкості для безумовних розкладів Шаудера у гільбертових просторах. Цей результат є узагальненням класичної теореми Т. Като про подібність послідовностей проекторів у гільбертових просторах на випадок безумовних розкладів Шаудера. Також ми уточнюємо одну теорему В.Н. Візітея про стійкість розкладів Шаудера у випадку безумовних розкладів Шаудера.
Downloads
References
Adduci J., Mityagin B. Root system of a perturbation of a selfadjoint operator with discrete spectrum // Integral Equations Operator Theory, 2012. - 73,
no 2. - P. 153-175.
Bari N.K. Biorthogonal systems and bases in Hilbert space // Moskov. Gos. Univ. Ucenye Zapiski. Matematika, 1951. - 148, no 4. - P. 69-107 (in Russian).
Bilalov B.T., Veliev S.G. Some Questions of Bases, - Baku: Elm, 2010. - 304 p. (in Russian).
Clark C. On relatively bounded perturbations of ordinary differential operators // Paciffc J. Math., 1968. - 25, no 1. - P. 59-70.
Curtain R.F., Zwart H.J. An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, Volume 21.- New-York: Springer-Verlag, 1995. - 698 p.
Fage M.K. Idempotent operators and their rectiffcation // Dokl. Akad. Nauk, 1950. - 73, - P. 895-897 (in Russian).
Fage M.K. The rectiffcation of bases in Hilbert space // Dokl. Akad. Nauk, 1950. - 74, - P. 1053-1056 (in Russian).
Gohberg I.C., Krein M.G. Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monogr., 18, - Providence, Rhode Island: American Mathematical Society, 1969. - 378 p.
Grinblyum M.M. On the representation of a space of type B in the form of a direct sum of subspaces // Dokl. Akad. Nauk, 1950. - 70, - P. 749-752 (in Russian).
Hughes E. Perturbation theorems for relative spectral problems // Canad. J. Math., 1972. - 24, no 1. - P. 72-81.
Kato T. Perturbation Theory for Linear Operators, 2nd ed. (reprint), Classics Math.,- Berlin: Springer-Verlag, 1995. - 619 p.
Kato T. Similarity for sequences of projections // Bull. Amer. Math. Soc., 1967. - 73, no 6. - P. 904-905.
Krein M., Milman D., Rutman M. On a property of a basis in a Banach space // Comm. Inst. Sci. Math. Mec. Univ. Kharkov [Zapiski Inst. Mat. Mech.], 1940. - 16, no 4. - P. 106-110 (in Russian, with English summary).
Lindenstrauss J., Tzafriri L. Classical Banach Spaces I and II.- Reprint of the 1977, 1979 ed., Berlin: Springer-Verlag, 1996. - 188 p.
Mackey G.W. Commutative Banach algebras, Lecture notes (multigraphed),- Harvard University, edited by A. Blair, 1952. - 95 p.
Marcus A.S. A basis of root vectors of a dissipative operator // Dokl. Akad. Nauk, 1960. - 132, no 3. - P. 524-527 (in Russian).
Mityagin B., Siegl P. Root system of singular perturbations of the harmonic oscillator type operators // preprint available at
http://arxiv.org/abs/1307.6245.
Orlicz W. Uber die Divergenz von allgemeinen Orthogonalreihen & Uber unbedingte Convergenz in Funktionraumen, Studia Math., 1933. - 4. - P. 27-37.
Rabah R., Sklyar G.M., Rezounenko A.V. Generalized Riesz basis property in the analysis of neutral type systems // C. R. Math. Acad. Sci. Paris, Ser. I, 2003. - 337. - P. 19-24.
Rabah R., Sklyar G.M., Rezounenko A.V. Stability analysis of neutral type systems in Hilbert space // J. Differential Equations, 2005. - 214. - P. 391-428.
Rabah R., Sklyar G.M. The analysis of exact controllability of neutral-type systems by the moment problem approach // SIAM J. Control Optim., 2007. - 46, no 6. - P. 2148-2181.
Singer I. Bases in Banach Spaces I,- Berlin: Springer-Verlag, 1970. - 668 p.
Singer I. Bases in Banach Spaces II,- Berlin: Springer-Verlag, 1981. - 880 p. 25. Vizitei V.N. On the stability of bases of subspaces in a Banach space, Studies on Algebra and Mathematical Analysis, Moldov. Acad. Sci., - Chistsinau: Kartja Moldovenjaska, 1965. - P. 32-44 (in Russian).
Wermer J. Commuting spectral measures on Hilbert space // Paciffc J. Math., 1954. - 4. - P. 355-361.
Zwart H. Riesz basis for strongly continuous groups // J. Differential Equations, 2010. - 249. - P. 2397-2408.
Copyright (c) 2014 Вестник университета, серия «Maтeмaтикa, приклaднaя мaтeмaтикa и механика»
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).