Riemann-Hilbert approach for the integrable nonlocal nonlinear Schr\"odinger equation with step-like initial data

  • Ya. Rybalko B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine https://orcid.org/0000-0001-5548-846X
  • D. G. Shepelsky B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine http://orcid.org/0000-0001-6616-5893
Keywords: nonlocal nonlinear Schrodinger equation; inverse scattering transform method; Riemann-Hilbert problem

Abstract

We study the Cauchy problem for
the integrable nonlocal nonlinear Schr\"odinger (NNLS) equation
\[
iq_{t}(x,t)+q_{xx}(x,t)+2 q^{2}(x,t)\bar{q}(-x,t)=0
\]
with a step-like initial data: $q(x,0)=o(1)$ as $x\to-\infty$ and $q(x,0)=A+o(1)$ as $x\to\infty$, where $A>0$ is an arbitrary constant. We develop the inverse scattering transform method for this problem in the
form of the Riemann-Hilbert approach and obtain the representation of the solution of the Cauchy
problem in terms of the solution of an associated Riemann-Hilbert-type analytic factorization problem,
which can be efficiently used for further studying the properties of the solution, including the large time
asymptotic behavior.

Downloads

Download data is not yet available.

Author Biography

D. G. Shepelsky, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

References

M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The Inverse Scattering Transform-Fourier Analysis
for Nonlinear Problems, Stud. Appl. Math., -- 1974. -- 53. -- P. 249--315.

M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schr\"odinger equation, Phys. Rev. Lett., -- 2013. -- 110. -- P. 064105-1--064105-5.

M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schr\"odinger equation, Nonlinearity. -- 2016. -- 29. -- P. 915--946.

C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having P-T symmetry, Phys. Rev. Lett., -- 1998. -- 80. -- P. 5243--5246.

R. F. Bikbaev, Diffraction in Nonlinear Defocusing Medium, Zapiski Nauch. Semin. LOMI. -- 1989. -- 179. -- P. 23--31.

A. Boutet de Monvel, V. P. Kotlyarov and D. Shepelsky, Focusing NLS Equation: Long-Time Dynamics of Step-Like
Initial Data, International Mathematics Research Notices. -- 2011. -- 7. -- P. 1613--1653.

P. A. Deift, A. R. Its and X. Zhou, Long-time asymptotics for integrable nonlinear wave equations,
Important developments in Soliton Theory 1980-1990, edited by A. S. Fokas and V. E. Zakharov, New York: Springer. -- 1993. -- P. 181--204.

P. A. Deift and X. Zhou, A steepest descend method for oscillatory Riemann--Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. -- 1993. -- 137. -- P. 295--36

T. Gadzhimuradov and A. Agalarov, Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schr\"odinger equation, Phys. Rev. A. -- 2016. -- 93. -- P. 062124-1--062124-6.

Ya. Rybalko, D. Shepelsky, Long-time asymptotics for the integrable nonlocal nonlinear Schr\"odinger equation, {arXiv:1710.07961}, 18 Apr 2018.

A. Sarma, M. Miri, Z. Musslimani, D. Christodoulides, Continuous and discrete Schr\"odinger systems with parity-time-symmetric nonlinearities, Physical Review E. -- 2014. -- 89. -- P. 052918-1--052918-7
Published
2018-12-30
Cited
How to Cite
Rybalko, Y., & Shepelsky, D. G. (2018). Riemann-Hilbert approach for the integrable nonlocal nonlinear Schr\"odinger equation with step-like initial data. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 88, 4-16. https://doi.org/10.26565/2221-5646-2018-88-01
Section
Статті