On relation between statistical ideal and ideal generated by a modulus function

  • D. Seliutin School of Mathematics and Informatics, V. N. Karazin Kharkiv National University. 4 Svobody Sq., Kharkiv, Ukraine, 61022 https://orcid.org/0000-0002-4591-7272
Keywords: ideal, statistical ideal, modulus function


Ideal on an arbitrary non-empty set $\Omega$ it's a non-empty family of subset $\mathfrak{I}$ of the set $\Omega$ which satisfies the following axioms: $\Omega \notin \mathfrak{I}$, if $A, B \in \mathfrak{I}$, then $A \cup B \in \mathfrak{I}$, if $A \in \mathfrak{I}$ and $D \subset A$, then $D \in \mathfrak{I}$. The ideal theory is a very popular branch of modern mathematical research. In our paper we study some classes of ideals on the set of all positive integers $\mathbb{N}$, namely the ideal of statistical convergence $\mathfrak{I}_s$ and the ideal $\mathfrak{I}_f$ generated by a modular function $f$. Statistical ideal it's a family of subsets of $\mathbb{N}$ whose natural density is equal to 0, i.e. $A \in \mathfrak{I}_s$ if and only if $\displaystyle\lim\limits_{n \rightarrow \infty}\frac{\#\{k \leq n: k \in A\}}{n} = 0$. A function $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ is called a modular function, if $f(x) = 0$ only if $x = 0$, $f(x + y) \leq f(x) + f(y)$ for all $x, y \in\mathbb{R}^+$, $f(x) \le f(y)$ whenever $x \le y$, $f$ is continuous from the right 0, and finally $\lim\limits_{n \rightarrow \infty} f(n) = \infty$. Ideal, generated by the modular function $f$ it's a family of subsets of $\mathbb{N}$ with zero $f$-density, in other words, $A \in \mathfrak{I}_f$ if and only if $\displaystyle\lim\limits_{n \rightarrow \infty}\frac{f(\#\{k \leq n: k \in A\})}{f(n)} = 0$. It is known that for an arbitrary modular function $f$ the following is true: $\mathfrak{I}_f \subset \mathfrak{I}_s$. In our research we give the complete description of those modular functions $f$ for which $\mathfrak{I}_f = \mathfrak{I}_s$. Then we analyse obtained result, give some partial cases of it and prove one simple sufficient condition for the equality $\mathfrak{I}_f = \mathfrak{I}_s$. The last section of this article is devoted to examples of some modulus functions $f, g$ for which $\mathfrak{I}_f = \mathfrak{I}_s$ and $\mathfrak{I}_g \neq \mathfrak{I}_s$. Namely, if $f(x) = x^p$ where $p \in (0, 1]$ we have $\mathfrak{I}_f = \mathfrak{I}_s$; for $g(x) = \log(1 + x)$, we obtain $\mathfrak{I}_g \neq \mathfrak{I}_s$. Then we consider more complicated function $f$ which is given recursively to demonstrate that the conditions of the main theorem of our paper can't be reduced to the sufficient condition mentioned above.


Download data is not yet available.


A. Aizpuru, M. C. Listan-Garcia, F. Rambla-Barreno. Density by moduli and statistical convergence. Quaestiones Mathematicae. - 2014 - Vol. 37, No 4. - P. 525-530. DOI: 10.2989/16073606.2014.981683.

M. C. Listan-Garcia. $f$-statistical convergence, completeness and $f$-cluster points. Bull. Belg. Math. Soc. Simon Stevin. - 2016. - 23 (2). - P. 235-245. DOI: 10.36045/bbms/1464710116.

V. M. Kadets, D. D. Seliutin. Completeness in topological vector spaces and filters on $mathbb{N}$. Bull. Belg. Math. Soc. Simon Stevin. - 2022. - 28 (4). P. 531 - 545. DOI: 10.36045/j.bbms.210512.

How to Cite
Seliutin, D. (2022). On relation between statistical ideal and ideal generated by a modulus function. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 95, 23-30. https://doi.org/10.26565/2221-5646-2022-95-02