Вплив полярності розчинника на спектри поглинання та флуоресценції нікотинаміду: визначення дипольних моментів основного та збудженого станів
Анотація
У цьому дослідженні дипольні моменти основного та збудженого станів нікотинаміду (NIC) були оцінені за допомогою сольватохромних ефектів і комп’ютерних обчислень. Подано загальний огляд впливу розчинників на електронні спектри поглинання та флуоресценції NIC. В обох спектрах спостерігалися виражені сольватохромні ефекти, а зсув піків випромінювання був більшим, ніж у відповідних спектрах поглинання. Експериментальні дипольні моменти основного μg та збудженого μe станів NIC оцінюються за сольватохромними зсувами спектрів поглинання та флуоресценції. Відмінності між дипольними моментами збудженого та основного станів, визначеними всіма методами, досить схожі. Розраховані енергетичні заборонені зони HOMO-LUMO, які становлять 5,566 еВ. Виявлено, що дипольний момент збудженого стану вищий, ніж у основного стану для всіх використаних методів, і це пояснюється більш полярним збудженим станом NIC. Нарешті, спостережувані спектральні властивості, виміряні значення дипольних моментів та електронні структури NIC у різних розчинниках надають важливі відомості про розподіл заряду та взаємодію між розчиненою речовиною та розчинником, що може бути корисним у дослідженні цих молекул у біологічних системах.
Завантаження
Посилання
B. Hassan, “Vitamins (importance and toxicity”, Pharmaceut Anal Acta, 3, e125 (2012). https://doi.org/10.4172/2153-2435.1000e125
J. Kamat, and T. Devasagayam, “Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria”, Redox Report, 4(4), 179 (1999). https://doi.org/10.1179/135100099101534882
A.R. Shalita, J.G. Smith, L.C. Parish, M.S. Sofman, and D.K. Chalker, “Topical nicotinamide compared with clindamycin gel in the treatment of inelammatory acne vulgaris”, International journal of dermatology, 34(6), 434 (1995). https://doi.org/10.1111/j.1365-4362.1995.tb04449.x
J.M. Denu, “Vitamin B3 and sirtuin function”, Trends in biochemical sciences, 30(9), 479 (2005). https://doi.org/10.1016/j.tibs.2005.07.004
L.K. Klaidman, S.K. Mukherjee, T.P. Hutchin, and J.D. Adams, “Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide”, Neuroscience letters, 206(1), 5 (1996). https://doi.org/10.1016/0304-3940(96)12446-0
R.B. Elliott, C.C. Pilcher, A. Stewart, D. Fergusson, and M.A. McGregor, “The use of nicotinamide in the prevention of type 1 diabetes”, Annals of the New York Academy of Sciences, 696, 333 (1993). https://doi.org/10.1111/j.1749-6632.1993.tb17169.x
R.W. Pero, B. Axelsson, D. Siemann, D. Chaplin, and G. Dougherty, in: ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer, edited by R. Alvarez-Gonzalez, (Springer, Boston, MA, 1999). pp. 119-125. https://doi.org/10.1007/978-1-4419-8740-2_18
E.L. Jacobson, W.M. Shieh, and A.C. Huang, in ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer, edited by R. Alvarez-Gonzalez, (Springer, Boston, MA, 1999). pp. 69-74.
H. Yamamoto, and H. Okamoto, “Protection by picolinamide, a novel inhibitor of poly (ADP-ribose) synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic islets”, Biochemical and biophysical research communications, 95(1), 474 (1980). https://doi.org/10.1016/0006-291X(80)90762-7
I. Muszalska, K. Kiaszewicz, D. Ksoń, and A. Sobczak, “Determination of nicotinamide (vitamin B3) in cosmetic products using differential spectrophotometry and liquid chromatography (HPLC)”, Journal of Analytical Chemistry, 68(11), 1007 (2013). https://doi.org/10.1134/S1061934813110087
X. Xiao, Y. Hou, J. Du, D. Sun, G. Bai, and G. Luo, Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Transactions of Tianjin University, 18(5), 372 (2012). https://doi.org/10.1007/s12209-012-1932-1
J.P. Maksimović, L.Z. Kolar-Anić, S.R. Anić, D.D. Ribić, and N.D. Pejić, “Quantitative determination of some water-soluble B vitamins by kinetic analytical method based on the perturbation of an oscillatory reaction”, Journal of the Brazilian Chemical Society, 22, 38 (2011). https://doi.org/10.1590/S0103-50532011000100005
A. Sikora, P. Szajerski, Ł. Piotrowski, J. Zielonka, J. Adamus, A. Marcinek, and J. Gębicki, “Radical scavenging properties of nicotinamide and its metabolites”, Radiation Physics and Chemistry, 77(3), 259 (2008). https://doi.org/10.1016/j.radphyschem.2007.05.005
P.A. Thibodeau, and B. Paquette, “DNA damage induced by catecholestrogens in the presence of copper (II): generation of reactive oxygen species and enhancement by NADH”, Free Radical Biology and Medicine, 27(11-12), 1367 (1999). https://doi.org/10.1016/S0891-5849(99)00183-5
A.C. Chen, et al, “A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention”, New England journal of medicine, 373(17), 1618 (2015). https://doi.org/10.1056/NEJMoa1506197
M. Escudero-Góngora, and P. Fernández-Peñas, “Nicotinamide: new indications in dermatology”, Actas Dermo-Sifiliograficas (English Edition), 9(107), 777 (2016). https://doi.org/10.1016/j.adengl.2016.05.024
M. Kumar, S. Jaiswal, R. Singh, G. Srivastav, P. Singh, T.N. Yadav, and R.A. Yadav, “Ab initio studies of molecular structures, conformers and vibrational spectra of heterocyclic organics: I. Nicotinamide and its N-oxide”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 281 (2010). https://doi.org/10.1016/j.saa.2009.10.025
S. Chlopick, J. Swies, A. Mogielnicki, W. Buczko, M. Bartus, M. Lomnicka, J. Adamus, and J. Gebicki, “1‐Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti‐thrombotic activity mediated by a cyclooxygenase‐2/prostacyclin pathway”, British journal of pharmacology, 152(2), 230 (2007). https://doi.org/10.1038%2Fsj.bjp.0707383
U.S. Raikar, C.G. Renuka, Y.F. Nadaf, B.G. Mulimani, A.M. Karguppikar, and M.K. Soudagar, “Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: Determination of ground and excited state dipole moment”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(3-4), 673 (2006). https://doi.org/10.1016/j.saa.2005.12.028
V.K. Sharma, P.D. Saharo, N. Sharma, R.C. Rastogi, S.K. Ghoshal, and D. Mohan, “Influence of solvent and substituent on excited state characterstics of laser grade coumarin dyes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1161 (2003). https://doi.org/10.1016/S1386-1425(02)00296-2
D.S. Chemla, and J. Zyss, editors, Nonlinear Optical Properties of Organic Molecules and Crystals, (Academic Press, Orlando, 2012). Vol. 1.
S. Inamdar, Y. Nadaf, and B. Mulimani, “Ground and excited state dipole moments of exalite 404 and exalite 417 UV laser dyes determined from solvatochromic shifts of absorption and fluorescence spectra”, Journal of Molecular Structure: THEOCHEM, 624(1-3), 47 (2003). https://doi.org/10.1016/S0166-1280(02)00734-0
S. Manohara, V.U. Kumar, Shivakumaraiah, and L. Gerward, “Estimation of ground and excited-state dipole moments of 1,2 diazines by solvatochromic method and quantum-chemical calculation”, Journal of Molecular Liquids, 181, 97 (2013). https://doi.org/10.1016/j.molliq.2013.02.018
İ. Sıdır, and Y.G. Sıdır, “Ground state and excited state dipole moments of 6, 8-diphenylimidazo [1, 2-α] pyrazine determined from solvatochromic shifts of absorption and fluorescence spectra”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1220 (2011). https://doi.org/10.1016/j.saa.2011.04.046
W. Liptay, “Dipole Moments and Polarizabilities in Excited Electronic States”, Excited States, 1, 129 (1974). https://doi.org/10.1016/B978-0-12-227201-1.50009-7
J. Czekalla, “Elektrische Fluoreszenzpolarisation: Die Bestimmung von Dipolmomenten angeregter Moleküle aus dem Polarisationsgrad der Fluoreszenz in starken elektrischen Feldern“, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 64(10), 1221 (1960). https://doi.org/10.1002/bbpc.19600641016
N. Bakhshiev, “Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. VII. Theory (general case of an isotropic solution)”, Optics and Spectroscopy, 16, 446 (1964).
V.L. Bilot, and A. Kawski, “Zur theorie des einflusses von Lösungsmitteln auf die elektronenspektren der moleküle“, Zeitschrift für Naturforschung A, 17(7), 621 (1962).
A. Kawski, and P. Bojarski, “Comments on the determination of excited state dipole moment of molecules using the method of solvatochromism”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 527 (2011). https://doi.org/10.1016/j.saa.2011.05.102
A. Chamma, and P. Viallet, “Determination du moment dipolaire d’une molecule dans un etat excite singulet”, CR Acad. Sci. Paris Ser. C, 270, 1901 (1970).
E.V. Lippert, “Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand“, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 61(8), 962 (1957). https://doi.org/10.1002/bbpc.19570610819
N. Mataga, Y. Kaifu, and M. Koizumi, “Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules”, Bulletin of the Chemical Society of Japan, 29(4), 465 (1956). https://doi.org/10.1246/bcsj.29.465
C. Reichardt, “Solvatochromic dyes as solvent polarity indicators”, Chemical reviews, 94(8), 2319 (1994). https://doi.org/10.1021/cr00032a005
J.-J. Aaron, M.D. Gaye, C. Párkányi, N.S. Cho, and L. von Szentpály, “Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states”, Journal of Molecular Structure, 156(1-2), 119 (1987). https://doi.org/10.1016/0022-2860(87)85046-9
Y.F. Nadaf, B.G. Mulimani, M. Gopal, and S.R. Inamdar, “Ground and excited state dipole moments of some exalite UV laser dyes from solvatochromic method using solvent polarity parameters”, Journal of Molecular Structure: THEOCHEM, 678(1-3), 177 (2004). https://doi.org/10.1016/j.theochem.2004.01.049
C. Párkányi, Michelle R. Stem-Beren, O. Martínez, J. Aaron, M. Bulaceanu-MacNair, and A. Arrieta, “Solvatochromic correlations and ground-and excited-state dipole moments of curcuminoid dyes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(8-9), 1805 (2004). https://doi.org/10.1016/J.SAA.2003.07.013
A. Kawski, B. Kukliński, and P. Bojarski, “Thermochromic absorption, fluorescence band shifts and dipole moments of BADAN and ACRYLODAN”, Zeitschrift für Naturforschung A, 57(8), 716 (2002). https://doi.org/10.1515/zna-2002-0812
J. Mannekutla, B. Mulimani, and S. Inamdar, “Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(2), 419 (2008). https://doi.org/10.1016/j.saa.2007.04.016
G. Dutt, M. Singh, and A. Sapre, “Rotational dynamics of neutral red: Do ionic and neutral solutes experience the same friction?”, The Journal of chemical physics, 109(14), 5994 (1998). https://doi.org/10.1063/1.477225
A. Belay, E. Libnedenge, H.K. Kim, and Y.-H. Hwang, “Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments”, Luminescence, 31(1), 118 (2016). https://doi.org/10.1002/bio.2932
J. Rabek, Progress in photochemistry and photophysics, (CRC Press, Boca Raton, USA, 1992), pp. 1-47.
Y.G. Sıdır, and I. Sıdır, “Solvent effect on the absorption and fluorescence spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4, 8 dimethylcoumarin: determination of ground and excited state dipole moments”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 286 (2013). https://doi.org/10.1016/j.saa.2012.10.018
A. Kawski, “On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra”, Zeitschrift für Naturforschung A, 57(5), 255 (2002). https://doi.org/10.1515/zna-2002-0509
N. Mataga, and T. Kubota, Molecular interactions and electronic spectra, (Marcel Dekker, Inc., New York, 1970), pp. 504. https://doi.org/10.1016/0022-2860(71)87043-6
E. Lippert, “Dipolmoment und Elektronenstruktur von angeregten Molekülen“, Zeitschrift für Naturforschung A, 10(7), 541 (1955). https://doi.org/10.1515/zna-1955-0707
P. Suppan, “Excited-state dipole moments from absorption/fluorescence solvatochromic ratios”, Chemical Physics Letters, 94(3), 272 (1983). https://doi.org/10.1016/0009-2614(83)87086-9
A. Kawski, “Untersuchungen zum zwischenmolekularen Energieübergang in fluoreszierenden Lösungen“, Zeitschrift für Naturforschung A, 18(8-9), 961 (1963). https://doi.org/10.1515/zna-1963-8-911
N. Bakhshiev, “Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. I. Theory (liquid solutions)”, Optics and Spectroscopy, 10, 379 (1961).
Frisch, M., et al., Gaussian 09, version D. 01, (Gaussian Inc., Wallingford, CT, 2009).
S. Sidir, and Y.G. Sidir, “Ground state and excited state dipole moments of 6, 8-diphenylimidazo [1, 2-α] pyrazine determined from solvatochromic shifts of absorption and fluorescence spectra”, Spectrochim Acta A Mol Biomol Spectrosc. 79(5), 1220 (2011). https://doi.org/10.1016/j.saa.2011.04.046
B. Vogelsanger, R.D. Brown, P.D. Godfrey, and A.P. Pierlot, “The microwave spectrum of a vitamin: nicotinamide”, Journal of Molecular Spectroscopy, 145(1), 1 (1991). https://doi.org/10.1016/0022-2852(91)90345-B
M. Paluch, and P. Dynarowicz, “The influence of nicotinamide on the adsorption equilibrium of aspirin at the aqueous solution-air interface”, Colloid and Polymer Science, 266(2), 180 (1988). https://doi.org/10.1007/BF01452816
İ. Sıdır, and Y.G. Sıdır, “Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 560 (2015). https://doi.org/10.1016/j.saa.2014.07.049
İ. Sıdıra, Y.G. Sıdır, H. Berber, and G. Türkoğlu, “Specific and non-specific interaction effect on the solvatochromism of some symmetric (2 hydroxybenzilydeamino) phenoxy Schiff base derivatives”, Journal of Molecular Liquids, 215, 691 (2016). https://doi.org/10.1016/j.molliq.2016.01.042
K. Woldegiorges, A. Belay, A. Kebede, and T. Abebe, “Estimating the Ground and Excited State Dipole Moments of Levofloxacin and Norfloxacin Drugs Using Solvatochromic Effects and Computational Work”, Journal of Spectroscopy, 2021, 7214182 (2021). https://doi.org/10.1155/2021/7214182
K.B. Akshaya, A. Varghese, P.L. Lobo, R, Kumar, and L. George, “Synthesis and photophysical properties of a novel phthalimide derivative using solvatochromic shift method for the estimation of ground and singlet excited state dipole moments”, Journal of Molecular Liquids, 224, 247 (2016). https://doi.org/10.1016/j.molliq.2016.09.115
M.K. Patil, M. Kotresh, and S.R. Inamdar, “A combined solvatochromic shift and TDDFT study probing solute-solvent interactions of blue fluorescent Alexa Fluor 350 dye: Evaluation of ground and excited state dipole moments”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 142 (2019). https://doi.org/10.1016/j.saa.2019.02.022
P. Krawczyk, “Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes”, Journal of molecular modeling, 21(5), 118 (2015). https://doi.org/10.1007/s00894-015-2651-z
A.R. Allouche, “Gabedit – A graphical user interface for computational chemistry softwares”, Journal of computational chemistry, 32(1), 174 (2011). https://doi.org/10.1002/jcc.21600
B. Siddlingeshwar and S. M. Hanagodimath, “Estimation of the ground and the first excited singlet-state dipole moments of 1, 4 disubstituted anthraquinone dyes by the solvatochromic method”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 4 (2010). https://doi.org/10.1016/j.saa.2009.12.007
M. Ravi, T. Soujanya, A. Samanta, and T. P. Radhakrishnan, “Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT”, Journal of the Chemical Society, Faraday Transactions, 91, 17 (1995). https://doi.org/10.1039/FT9959102739
Авторське право (c) 2022 Атакльті Абраха Гебрейоханес, Абебе Белай, Гетачеу Алему
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).