The Application of the Genetic Algorithm-Back Propagation Neural Network Algorithm in the High-Energy Physics

  • M. Y. El-Bakry Ain Shams University, Faculty of Education, Physics Department, Roxi, Cairo, Egypt
  • E. A. El-Dahshan Egyptian E-Learning University- 33 El-mesah St., El-Dokki- Giza- Postal code 11566 University, Faculty of Sciences, Physics Department, Abbassia, Cairo, Egypt
  • A. Radi Ain Shams University, Faculty of Sciences, Physics Department, Abbassia, Cairo, Egypt
  • M. Tantawy Ain Shams University, Faculty of Education, Physics Department, Roxi, Cairo, Egypt
  • M. A. Moussa Ain Shams University, Faculty of Education, Physics Department, Roxi, Cairo, Egypt Buraydah Colleges, Al-Qassim, Buraydah, King Abdulazziz Road, East Qassim University, P.O.Box 31717, KSA
Keywords: high and ultrahigh energy physics, hadron-nucleus (h-A) interactions, rapidity distribution, modeling and simulation, hybrid evolutionary-neuro model

Abstract

Multiparticle production mechanism is one of the most phenomena that the high-energy physics concerns. In this work, the evolutionary genetic algorithm (GA) is used to optimize the parameters of the back-propagation neural networks (BPNN). The hybrid evolutionary-neuro model (GA-BPNN) was trained to simulate the rapidity distribution 1/N(dN/dY) of positive and negative pions p-Au, p-Ag and p-Xe for p-Ar, p-Xe interactions at lab momentum Plab =100 GeV/c. Also, for total charged, positive and negative pions for  interactions at Plab = 200 GeV/c. Finally, total charged particles for p- Pb collision at center-of-mass energy sqrt(s) = 5.02 TeV are simulated. An efficient ANN network with different connection parameters (weights and biases) have been designed by the GA to calculate and predict the rapidity distribution as a function of the lab momentum Plab, mass number (A) and the number of particles per unit solid angle (Y). Our simulated results have been compared with the experimental data and the matching has been clearly found. It is indicated that the developed GA-BPNN model for rapidity distribution was more successful.

Downloads

Download data is not yet available.

References

Tantawy M., El-Mashad M., El-Bakry M.Y. Multiparticle Production Process in High Energy Nucleus-Nucleus Collisions // Ind. J. Phys. – 1998. –Vol. 72A. – No.1. – P.73-82.

Tantawy M., El Mashad M., Gamiel S., El Nagdy M.S. Multiplicity distribution of heavy particles for hadron–nucleus interactions // Chaos Soliton Fract. – 2002. – Vo1.3. – No.4. – P.919–928.

Ranft J. Secondary particle production according to the thermodynamical model and new experimental data // Phys. Lett. B. – 1970. – Vol.31. – No.8. – P.529-532.

Fermi E. High Energy Nuclear Events // Prog. Theor. Phys. – 1950. – Vol.5. – No.4. – P.570 -583.

Fermi E. Angular Distribution of the Pions Produced in High Energy Nuclear Collisions // Phys. Rev. – 1951. – Vol 81. – No.5. – P.683-687.

Jacob M., Slansky R. Inclusive pion distributions at present machine energy // Phys. Lett. B. – 1971. – Vol. 37. – No.4. - P. 408-412.

Hwa R.C. Multiplicity Distribution and Single-Particle Spectrum in the Diffractive Model // Phys. Rev. Lett.. – 1971. – Vol.26. – No.18. – P.1143.

Hwa R.C. Bootstrap Model for Diffractive Processes: Complementarity of the Yang and Regge Models // Phys. Rev. D. - 1970. – Vol.1. – No.6. – P.1790.

Kisslinger L.S. Nuclear physics and quark/gluon QCD // Nucl. Phys. A. – 1985. – Vol.446. – No.1. – P.479-488.

Gyulassy M. Introduction to QCD thermodynamics and the quark-gluon plasma // Progress in Particle and Nuclear Physics. - 1985. – Vol.15. – P.403-442.

Nambu Y. The confinement of quarks // Sci Am. – 1976. – Vol.235. – No.45. – P. 48-61.

Xu, C., Wei-Qin, C., Ta-Chung, M., Chao-Shang, H. (1986). Statistical approach to nondiffractive hadron-hadron collisions: Multiplicity distributions and correlations in different rapidity intervals // Phys. Rev. D. – Vol.33. – No.5. – P. 1287.

El-Bakry S.Y., El-Dahshan E.S., El-Bakry M.Y. Total cross section prediction of the collisions of positrons and electrons with alkali atoms using Gradient Tree Boosting // Ind. J. Phys. 2011. – Vol. 85. – No.9. – P.1405-1415.

El-Bakry M.Y. Feed forward neural networks modeling for K–P interactions // Chaos Soliton Fract. – 2003. – Vol. 18. – No.5. –P. 995-1000.

El-Dahshan, E., Radi, A., El-Bakry M.Y. Artificial Neural Network and Genetic Algorithm Hybrid Technique for Nucleus-Neucleus Collisions // Int. J. of Mod. Phys. C. – 2008. – Vol.19. – No.12. – P.1787-1795.

El-Bakry M.Y., El-Dahshan E.S.A., El-Bakry S.Y. Mathematical modelling for pseudorapidity distribution of hadron-hadron collisions // Eur. Phys. J. Plus. – 2015. – Vol.130. – No.1. – P.1-7.

El-Bakry M.Y., El-Dahshan E.S.A., Radi A. ,Tantawy M., Moussa M.A. Modeling and Simulation for High Energy Sub-Nuclear Interactions Using Evolutionary Computation Technique // Journal of Applied Mathematics and Physic – 2016. - Vol.4. – No.1. – P. 53-65.

Whitmore J.J., Persi F., Toothacker W.S., Elcombe P.A., Hill J.C., Neale W.W., Ammar R. Inclusive charged pion production in hadron-nucleus interactions at 100 and 320 GeV/c // Z. Phys. C Part Field. – 1994. – Vol.62. – No.2. – P. 199-227.

De Marzo C., De Palma M., Distante A., Favuzzi C., Germinario G., Lavopa P. & Spinelli P. Multiparticle production on hydrogen, argon, and xenon targets in a streamer chamber by 200-GeV/c proton and antiproton beams // Phys. Rev. D. – 1982. – Vol.26. – No.5. – P.1019.

Arneodo M., Arvidson A., Aubert J.J., Badełek B., Beaufays J., Bee C.P., Böhm, E. Comparison of multiplicity distributions to the negative binomial distribution in muon-proton scattering // Z. Phys. C. Part Field. – 1987. – Vol.35. – No.3. – P.335-345.

Kittel W. Combining inclusive and exclusive data analyses-what have we learned so far? //J. Phys A-Math. Gen. – 1973. – Vol.6. – No.6. – P.733.

Abelev B., Adam J., Adamová D., Adare A.M., Aggarwal M.M., Rinella G.A., Ahmad N. Pseudorapidity density of charged particles in p+ Pb collisions at 02.5SNN= TeV // Phys. Rev. lett. – 2013. – Vol.110. – No.3. – P.032301.

Guettler K., Duff, B.G., Prentice M.N., Sharrock S.J., Gibson W.M., Duane A., Henning S. Inclusive production of low-momentum charged pions at x= 0 at the CERN intersecting storage rings // Phys. Lett. B. – 1976. – Vol. 64. – No.1. – P.111-116.

Adamovich M.I., Chernjavskii M.M., Dremin I.M., Gershkovich A.M., Kharlamov S.P., Larionova V.G., Yagudina F.R. Clusters and the rapidity interval method. Il Nuovo Cimento A. – 1976. – Vol.33. – No.1. – P.183-194.

Haykin S.S., et al. Neural networks and learning machines. – 2009. – Vol.3. Upper Saddle River: Pearson Education. 26. Chipperfield A.J., Fleming P.J. The MATLAB genetic algorithm toolbox / Applied control techniques using MATLAB, IEE Colloquium on. – 1995, January. – P.10/1-10/4.

Published
2016-08-11
Cited
How to Cite
El-Bakry, M. Y., El-Dahshan, E. A., Radi, A., Tantawy, M., & Moussa, M. A. (2016). The Application of the Genetic Algorithm-Back Propagation Neural Network Algorithm in the High-Energy Physics. East European Journal of Physics, 3(2), 4-14. https://doi.org/10.26565/2312-4334-2016-2-01