Modeling of the Characteristics of Electron Beams and Generated Photon Fluxes on the M-30 Microtron

Keywords: Microtron, GEANT4, Electron beam, Bremsstrahlung, Ti window, Air, Spectra, Spatial distributions

Abstract

Ensuring optimization of the radiation treatment process of experimental samples at electron accelerators and effective prediction of the results of the interaction of electron beams with irradiation objects requires the most accurate information about the characteristics of the beams. The initial (primary) characteristics of accelerator electron beams during transportation to irradiation objects will change due to their interaction with the external environment (air). Thus, secondary particles are also generated - bremsstrahlung photons, which also interact with samples. The paper presents the results of studies on modeling the influence of air layers on the change in the initial characteristics of electron beams during their transportation to irradiation objects and on the parameters of the generated bremsstrahlung photon fluxes in the plane of placement of experimental samples. The studies used the Monte Carlo code ‒ GEANT4. The modeling was carried out for the electron accelerator of the IEP NAS of Ukraine - the M-30 microtron, taking into account its technical parameters. The results of studies of the characteristics (energy spectrum, their integral values, transverse distributions in the 10×10 cm plane) of the electron beam and secondary photons at the output of the electron accelerator are presented. The influence of the thicknesses of the air layers (0.1÷500 cm) between the electron output unit and the potential plane (100×100 cm) of the placement of experimental samples for irradiation on the characteristics of the primary electron beams and generated bremsstrahlung photons (for the energy range of 6÷20 MeV) is studied.

Downloads

Download data is not yet available.

References

F. Méot. Understanding the Physics of Particle Accelerators. A Guide to Beam Dynamics Simulations Using ZGOUBI // Springer Cham. 2024. 636 p. https://doi.org/10.1007/978-3-031-59979-8

F. Frei, S. Vörös, M. Lüthi, P. Peier, Nuclear Instruments and Methods in Physics Research A, 1077, 170588 (2025). https://doi.org/10.1016/j.nima.2025.170588

A. Ikhlaq, S.A. Buzdar, M. Aslam, M.U. Mustafa, S. Salahuddin, M. Nisa, Scientific Inquiry and Review, 5(3), 13 (2021). https://doi.org/10.32350/sir/52

S.D. Quoc, T. Fujibuchi, H. Arakawa, K. Hamada, D.H. Han, Applied Radiation and Isotopes, 219, 111704 (2025). https://doi.org/10.1016/j.apradiso.2025.111704

Md.K. Hasan, D. Staack, S.D. Pillai, L.S. Fifield, M. Pharr, Polymer Degradation and Stability, 221, 110677 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110677

Z. Chu, H. Wang, B. Dong, Molecules, 29(14), 3318 (2024). https://doi.org/10.3390/molecules29143318

A.G. Chmielewski, Radiation Physics and Chemistry, 213, 111233 (2023). https://doi.org/10.1016/j.radphyschem.2023.111233

Y. Wang, D. Chen, R.S. Augusto, J. Liang, Z. Qin, J. Liu, Z. Liu, Molecules, 27(16), 5294 (2022). https://doi.org/10.3390/molecules27165294

J. Bendahan, Nuclear Instruments and Methods in Physics Research Section A, 954. 161120 (2020). https://doi.org/10.1016/j.nima.2018.08.079

A. Ryczkowski, T. Piotrowski, M. Staszczak, M. Wiktorowicz, P. Adrich, Zeitschrift für Medizinische Physik, 34(4), 510 (2024). https://doi.org/10.1016/j.zemedi.2023.03.003

C. Oproiu, M.R. Nemţanu, M. Braşoveanu, and M. Oane, “Determination of absorbed dose distribution in technological accelerated electron beam treatments,” in: Practical Aspects and Applications of Electron Beam Irradiation, ch. 2, edited by M.R. Nemtanu and M. Brasoveanu (Transworld Research Network, 2011). p. 17-41.

W. Strydom, W. Parker, and M. Olivares, “Electron beams: Physical and clinical aspects,” in: Review of Radiation Oncology Physics: A Handbook for Teachers and Students, Chapter 8, tech. editor E.B. Podgorsak, International Atomic Energy Agency Library Cataloguing in Publication Data. Vienna: 2005. p. 273-300. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1196_web.pdf

H.O. Tekin, T. Manici, E.E. Altunsoy, K. Yilancioglu, and B. Yilmaz, Acta Physica Polonica A, 132(3-II), 967 (2017). https://doi.org/10.12693/APhysPolA.132.967

M.K. Saadi, and R. Machrafi, Applied Radiation and Isotopes, 161, 109145 (2020). https://doi.org/10.1016/j.apradiso.2020.109145

G.X. Ding, S. Kucuker-Dogan, and I.J. Das, Medical Physics, 49(2), 1297 (2022). https://doi.org/10.1002/mp.15433

V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, and A.A. Zakharchenko, Problems of Atomic Science and Technology, (6), 163 (2019). https://doi.org/10.46813/2019-124-163

V.L. Uvarov, A.A. Zakharchenko, L.V. Zarochintsev, et al., Problems of Atomic Science and Technology, (3), 154 (2020). https://doi.org/10.46813/2020-127-154

M.R.M. Chulan, M.F.M. Zin, L.K. Wah, M. Mokhtar, M.A. Ahmad, A.H. Baijan, R.M. Sabri, and K.A. Malik, IOP Conf. Series: Materials Science and Engineering, 785, 012003 (2020). https://doi.org/10.1088/1757-899X/785/1/012003

P. Apiwattanakul, and S. Rimjaem, Nuclear Inst. and Methods in Physics Research B, 466, 69 (2020). https://doi.org/10.1016/j.nimb.2020.01.012

R.I. Pomatsalyuk, V.A. Shevchenko, D.V. Titov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko, and V.N. Vereshchaka, Problems of Atomic Science and Technology, (6), 201 (2021). https://doi.org/10.46813/2021-136-201

H. Kim, D.H. Jeong, S.K. Kang, M. Lee, H. Lim, S.J. Lee, and K.W. Jang, Nuclear Engineering and Technology, 55, 3417 (2023). https://doi.org/10.1016/j.net.2023.05.033

A. Toutaoui, A.N. Aichouche, K. Adjidir, and A.C. Chami, Journal of Medical Physics, 33, 141 (2008). https://doi.org/10.4103/0971-6203.44473

G.X. Ding, Z.(J) Chen, and K. Homann, Medical Physics, 51, 5563 (2024). https://doi.org/10.1002/mp.17186

J. Tertel, J. Wulff, H. Karle, and K. Zink, Zeitschrift für Medizinische Physik, 30(10), 51 (2010). https://doi.org/10.1016/j.zemedi.2009.11.001

M.R.S. Didi, M. Zerfaoui, M. Hamal, Y. Oulhouq, and A. Moussa, Radiation Physics and Chemistry, 207, 110859 (2023). https://doi.org/10.1016/j.radphyschem.2023.110859

G.X. Ding, S. Kucuker-Dogan, and I.J. Das, Medical Physics, 49(2), 1297 (2022). https://doi.org/10.1002/mp.15433

N. Khaledi, D. Sardari, M. Mohammadi, A. Ameri, and N. Reynaert, Journal of Radiotherapy in Practice, 17, 319 (2018). https://doi.org/10.1017/S1460396917000711

A. Ryczkowski, T. Piotrowski, M. Staszczak, M. Wiktorowicz, and P. Adrich, Zeitschrift für Medizinische Physik, 34(4), 210 (2024). https://doi.org/10.1016/j.zemedi.2023.03.003

A. Ryczkowski, B. Pawałowski, M. Kruszyna-Mochalska, A. Misiarz, A. Lenartowicz-Gasik, M. Wosicki, A. Jodda, et al., Polish Journal of Medical Physics and Engineering, 30, 177 (2024). https://doi.org/10.2478/pjmpe-2024-0021

V.T. Maslyuk, Visnyk of the National Academy of Sciences of Ukraine, 11, 46 (2016). https://doi.org/10.15407/visn2016.11.046

Professional public organization «Ukrainian Association of Medical Physicists», Remote radiation therapy in Ukraine. https://uamp.org.ua/useful-information/radiotherapy-equipment-in-ukraine/external-radiotherapy/ (in Ukrainian)

GEANT4 11.1 (9 December 2022). https://geant4.web.cern.ch/download/11.1.0.html

S. Ashurov, S. Palvanov, A. Tuymuradov, and D. Tuymurodov, Bulletin of National University of Uzbekistan Mathematics and Natural Sciences, 6(4), 179 (2023). https://doi.org/10.56017/2181-1318.1257

T.V. Malykhinaa, V.E. Kovtuna, V.I. Kasilovb, and S.P. Gokov, East European Journal of Physics, 4, 91 (2021). https://doi.org/10.26565/2312-4334-2021-4-10

E. Oleinikov, I. Pylypchynets, and O. Parlag, Journal of Nuclear and Particle Physics, 13, 7 (2023). https://doi.org/10.5923/j.jnpp.20231301.02

E.V. Oleinikov, I.V. Pylypchynets, O.O. Parlag, and V.V. Pyskach, 153(5), 148 (2024). https://doi.org/10.46813/2024-153-148

OriginLab Corporation, One Roundhouse Plaza, Suite 303, Northampton, MA 01060, UNITED STATES, OriginPro, https://www.originlab.com/

R. Maskani, M.J. Tahmasebibirgani, M.H. Ghahfarokhi, and J. Fatahias, Asian Pacific Journal of Cancer Prevention, 16(17), 7795 (2015). https://doi.org/10.7314/APJCP.2015.16.17.7795

M. Rezzoug, M. Zerfaoui, Y. Oulhouq, and A. Rrhioua, Reports of Practical Oncology & Radiotherapy, 28(5), 592 (2023). https://doi.org/10.5603/rpor.96865

M. Rezzoug, M. Zerfaoui, Y. Oulhouq, A. Rrhioua, S. Didi, M. Hamal, and A. Moussa, Radiation Physics and Chemistry, 207, 110859 (2023). https://doi.org/10.1016/j.radphyschem.2023.110859

M.A. Pagnan-González, J.O. Hernández-Oviedo, and E. Mitsoura, Revista de Medicina e Investigación, 3(1), 22 (2015). https://doi.org/10.1016/j.mei.2015.02.002

Published
2025-09-08
Cited
How to Cite
Oleinikov, E. V., Chvátil, D., Remeta, E. Y., Gomonai, A. I., & Bilak, Y. Y. (2025). Modeling of the Characteristics of Electron Beams and Generated Photon Fluxes on the M-30 Microtron. East European Journal of Physics, (3), 74-84. https://doi.org/10.26565/2312-4334-2025-3-07