Effect of Anisotropic Dust Pressure on the Formation and Propagation of Arbitrary Amplitude Dust Acoustic Solitary Waves (DASW) in a Magnetized Dust-Ion-Electron Plasma
Abstract
Arbitrary amplitude dust acoustic solitary waves (DASW) in a dusty magneto-plasma with anisotropic dust pressure and nonthermal distribution of ions and electrons has been investigated. Sagdeev pseudopotential technique is used to derive an energy balance equation and to analyze various properties of dust acoustic solitons. The effects of anisotropic dust pressure, dust number density ratio, non-thermality, etc., are investigated numerically for the propagation of DASWs. It is found that rarefactive solitons can exist for negatively charged dust, and compressive solitons can exist for positively charged dust. The present study could be useful for the understanding of DASWs in various astrophysical environments.
Downloads
References
.I. Vette, “Summary of Particle Populations in the Magnetosphere,” Particles and Fields in the Magnetosphere. Astrophysics and Space Science Library, 17, 305-318, (1970), https://doi.org/10.1007/978-94-010-3284-1_30
R.L. Toker, and S.P. Gary, “Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp,” Geophys. Res. Lett. 11(12), 1180-1183 (1984) https://doi.org/10.1028/GL011i012p01180
P.K. Shukla, and V.P. Silin, “Dust ion-acoustic wave,” Phys. Scr., 45, (5), 508 (1992) https://doi10.1088/0031-8949/45/5/015
V.W. Chow, D.A. Mendis, and M. Rosenberg, “Role of grain size and particle velocity distribution in secondary electron emission in space plasmas,” J. Geophys. Res. 98(A11), 19065-19076 (1993), https://doi.org/10.1029/93JA02014
F. Verheest, Waves in dusty space plasmas, (Kluwer Academic, Dordrecht, Netherlands, 2000), https://doi.org/10.1007/978-94-010-9945-5
P.K. Shukla, and A.A. Mamun, Introduction to Dusty Plasma Physics, (Bristol, U.K. 2000).
A. Bouchoule, Dusty plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing, (Wiley, Chichester, U. K. 1999).
D.A. Mendis, and M. Rosenberg, “Cosmic dusty plasma”, Annu. Rev. Astron. Astrophys. 32(1) 419-463 (1994). https://doi.org/10.1146/annurev.aa.32.090194.002223
L. Boufendi, M.C. Jouanny, E. Kovacevic, J. Berndt, and M. Mikikian, “Dusty plasma for nanotechnology,” J. Phys. D: Appl. Phys. 44, 174035 (2011). https://doi.org/10.1088/0022-3727/44/17/174035
U. Kortshagen, “Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs,” Plasma Chem. Plasma Process. 36, 73-84 (2016). https://doi.org/10.1007/s11090-015-9663-4
A.A. Mamun, “Arbitrary Amplitude Dust-acoustic Solitary Structures in a Three-component Dusty Plasma,” Astrophys. Space Sci. 268, 443-454 (1999). https://doi.org/10.1023/A:1002031022895
S. Ghosh, T.K. Chaudhuri, S. Sarkar, M. Khan, and M. R. Gupta, “Small Amplitude Nonlinear Dust Acoustic Wave Propagation in Saturn's F, G and E Rings,” Astrophys. Space Sci. 278, 463-477 (2001). https://doi.org/10.1023/A:1013100707057
S.K. El-Labany, W.F. El-Taibany, A.A. Mamun, and W.M. Moslem, “Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions,” Phys. Plasmas, 11, 926-933 (2004). https://doi.org/10.1063/1.1643757
A. Rahman, A.A. Mamun, and S.M.K. Alam, “Shock waves in a dusty plasma with dust of opposite polarities,” Astrophys. Space Sci. 315, 243-247 (2008). https://doi.org/10.1007/s10509-008-9824-5
F. Verheest, and S.R. Pillay, “Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas,” Phys. Plasmas, 15, 013703 (2008). https://doi.org/10.1063/1.2831025
S.K. El-Labany, E.F. El-Shamy, R. Sabry, and M. Shokry, “Head-on collision of dust-acoustic solitary waves in an adiabatic hot dusty plasma with external oblique magnetic field and two-temperature ions,” Astrophys. Space Sci. 325, 201-207 (2010). https://doi.org/10.1007/s10509-009-0192-6
M. Shahmansouri, and M. Tribeche, “Dust acoustic localized structures in an electron depleted dusty plasma with two-suprathermal ion-temperature,” Astrophys. Space Sci. 342, 87-92 (2012). https://doi.org/10.1007/s10509-012-1149-8
T.K. Balaku, and M.A. Hellberg, “Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions,” Phys. Plasmas, 15, 123705 (2008), https://doi.org/10.1063/1.3042215
A. Paul, G. Mandal, A.A. Mamun, and M.R. Amin, “Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma with nonthermal electron and vortex-like ion distribution,” Phys. Plasmas, 20, 104505 (2013). https://doi.org/10.1063/1.4826591
N. Akhtar, S. Mahmood, and H. Saleem “Dust acoustic solitary waves in the presence of hot and cold dust” Phys. Lett. A, 361, 126-132 (2007). https://doi.org/10.1016/j.physleta.2006.09.017
R.M. Crutcher, “Magnetic fields in molecular clouds,” Ann. Rev. Astron. Astrophys. 50(1), 29 (2012). https://doi.org/10.1146/annurev-astro-081811-125514
S. Reissl, A.M. Stutz, R.S. Klessen, D. Seifried, and S. Walch, “Magnetic fields in star-forming systems II: Examining dust polarization, the Zeeman effect, and the faraday rotation measure as magnetic field tracers,” Mon. Not. R. Astron. Soc. 500(1), 153-176 (2021). https://doi.org/10.1093/mnras/staa3148
H.B. Li, “Magnetic Fields in Molecular Clouds—Observation and Interpretation,” Galaxies, 9(2), 9020041 (2021). https://doi.org/10.3390/galaxies9020041
A.A. Mamun, “Nonlinear propagation of dust-acoustic waves in a magnetized dusty plasma with vortex-like ion distribution,” J. Plasma Phys. 59(3), 575-580 (1998). http://dx.doi.org/10.1017/S002237789800645X
A.A. Mamun, M.N. Alam, A.K. Das, Z. Ahmed, and T.K. Datta, “Obliquely Propagating Electrostatic Solitary Structures in a Hot Magnetized Dusty Plasma,” Phys. Scr. 58(1), 72 (1998). https://doi.org/10.1088/0031-8949/58/1/010
T. Farid, A.A. Mamun, P.K. Shukla, and A.M. Mirza, “Nonlinear electrostatic waves in a magnetized dust-ion plasma,” Phys. Plasmas, 8, 1529-1532 (2001). https://doi.org/10.1063/1.1364512
M. Shahmansouri, and H. Alinejad, “Dust acoustic solitary waves in a magnetized electron depleted superthermal dusty plasma,” Phys. Plasmas, 20, 033704 (2013). https://doi.org/10.1063/1.4796195
M. Choudhury, “Propagation of Arbitrary Amplitude Dust Acoustic (DA) Waves in a Magnetized Plasma with Non-thermal Electrons and Ions,” Braz. J. Phys. 53, 110 (2023). https://doi.org/10.1007/s13538-023-01323-8
G.F. Chew, M.L. Goldberger, and F.F. Low, “The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions,” Proc. R. Soc. London Ser. 236, 112-118 (1956). https://doi.org/10.1098/rspa.1956.0116
C.R. Choi, C.M. Ryu, D.Y. Lee, N.C. Lee, and Y.H. Kim, “Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure,” Phys. Lett. A, 364(3-4), 297 (2007). https://doi.org/10.1016/j.physleta.2006.12.014
P. Chatterjee, T. Saha, and C.M. Ryu, “Obliquely propagating ion acoustic solitary waves and double layers in a magnetized dusty plasma with anisotropic ion pressure,” Phys. Plasmas, 15, 123702 (2008). https://doi.org/10.1063/1.2996114
M.F. Bashir, E.E. Behary, and W.F. El-Taibany, “Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves,” Phys. Plasmas, 22, 062112 (2015). https://doi.org/10.1063/1.4922750
A.A. Mamun, R.A. Cairns, and P.K. Shukla, “Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves,” Phys. Plasmas, 3, 2610-2614 (1996). https://doi.org/10.1063/1.871973
R. Roychoudhury, “Arbitrary-amplitude solitary kinetic Alfvén waves in a non-thermal plasma,” J. Plasma Phys. 67, 199-204(2-3), (2002). https://doi.org/10.1017/S0022377801001544
S. Ghosh, R. Bharuthram, M. Khan, and M.R. Gupta, “Instability of dust acoustic wave due to nonthermal ions in a charge varying dusty plasma,” Phys. Plasmas, 11, 3602-3609 (2004). https://doi.org/10.1063/1.1760584
A. Berbri, and M. Tribeche, “Weakly Nonlinear Dust-Ion-Acoustic Shock Waves in a Dusty Plasma with Nonthermal Electrons,” Phys. Plasmas, 16, 053701 (2009). https://doi.org/10.1063/1.3124137
R.Z. Sagdeev, Rev. Plasma Phys. 4, 23 (1966).
A. Bahache, D. Bennaceur-Doumaz, and M. Djebli, “Effects of energetic electrons on ion acceleration in a quasi-static model”, Plasma Phys. 24, 083102 (2017). https://doi.org/10.1063/1.4994706
R.E. Denton, B.J. Anderson, S.P. Gary, and S.A. Fuselier, “Bounded anisotropy fluid model for ion temperatures,” J. Geophys. Res. 99, 11225-11241 (1994). https://doi.org/10.1029/94ja00272
M.S. Nakwacki, E.M. Gouveia Dal Pino, G. Kowal, and R. Santos-Lima, “The role of pressure anisotropy in the turbulent intracluster medium,” J. Phys.: Conf. Ser. 370, 012043 (2012). https://doi.org/10.1088/1742-6596/370/1/012043
R.E. Tolba, W.M. Moslem, and R Sabry, “Modulated dust-ion-acoustic waves result from Earth's magnetosphere and lunar ionosphere interactions,” Physics of Fluids, 36, 037145 (2024). https://doi.org/10.1063/5.0198213
Y.N. Izvekova, T.I. Morozova, and S.I. Popel, “Interaction of the Earth’s Magnetotail with Dusty Plasma Near the Lunar Surface: Wave Processes and Turbulent Magnetic Reconnection,” IEEE Trans. 46, 731-738 (2018). https://doi.org/10.1109/tps.2017.2752084
M.S. Afify, N.A. El-Shafeay, W.M. Moslem, W.F. El-Taibany, and S.K. El-Labany, “Structures of dust-ion acoustic waves in the lunar dark side induced by interaction with Earth’s magnetosphere,” Astrophys. Space Sci. 368, 71 (2023). https://doi.org/10.1007/s10509-023-04223-0
Copyright (c) 2025 Mamani Choudhury

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



