FLRW model coupled with mass less scalar field in f(T) gravity-Two fluid scenario

Keywords: Two fluids, f(T) gravity, linear deceleration parameter, Cosmology

Abstract

In this work, we investigate a cosmological model within the framework of modified teleparallel gravity, known as f(T) gravity, by considering a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) Universe filled with two fluids-barotropic matter and a dark fluid-alongside a massless scalar field. We study an interacting case of the fluids, deriving exact solutions of the field equations under a time-dependent deceleration parameter scenario. The model demonstrates a viable cosmological sequence: early decelerating expansion followed by late-time acceleration. The torsion scalar T, its function f(T), and the scalar field all evolve dynamically, transitioning from dominant roles in the early Universe to diminished effects at late times. The dark fluid energy density remains nearly constant, supporting accelerated expansion, while the matter density decreases with cosmic time. The effective equation of state (EoS) parameter evolves from a matter-like behavior to negative values, suggesting a natural transition from matter domination to a dark energy-dominated phase. These results affirm that f(T) gravity coupled with a scalar field can explain cosmic acceleration and provide an alternative to the standard ΛCDM model without invoking exotic energy components.

Downloads

Download data is not yet available.

References

A. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrohpys. J. 517, 565 (1999). https://doi.org/10.1086/307221

J. Tonry, et al., “Cosmological Results from High-z Supernovae”, Astrophys. J. 594, 1 (2003). https://doi.org/10.1086/376865

A. Riess, et al., “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J. 607, 665 (2004). https://doi.org/10.1086/383612

X. Meng, and X. Dou, “Friedmann cosmology with bulk viscosity: a concrete model for dark energy,” Commun. Theor. Phys. 52, 377 (2009). https://doi.org/10.1088/0253-6102/52/2/36

A. Mohammadi, and M. Malekjani, “Interacting Entropy-Corrected Holographic Scalar Field Models in Non-Flat Universe,” Commun. Theor. Phys. 55, 942 (2011). https://doi.org/10.1088/0253-6102/55/5/37

M. Xin-He, and D. Xu, “Singularities and Entropy in Bulk Viscosity Dark Energy Model,” Commun. Theor. Phys. 56, 957 (2011). https://doi.org/10.1088/0253-6102/56/5/27

M. Setare, “Interacting holographic dark energy model in non-flat universe,” Phys. Lett. B, 642, 1-4 (2006). https://doi.org/10.1016/j.physletb.2006.09.027

M. Setare, “Interacting holographic generalized Chaplygin gas model,” Phys. Lett. B, 654, 1-6 (2007). https://doi.org/10.1016/j.physletb.2007.08.038

J. Chen, and Y. Wang, “Evolution of the interacting viscous dark energy model in Einstein cosmology,” arXiv:0904.2808v4 [gr qc] (2009). https://doi.org/10.48550/arXiv.0904.2808

A. Avelino, “Interacting viscous matter with a dark energy fluid,” arXiv:1205.0613v2 [astro-ph.CO] (2012). https://doi.org/10.48550/arXiv.1205.0613

B. Saha, H. Amirhashchi, and A. Pradhan, “Two-Fluid Scenario for Dark Energy Models in an FRW Universe,” Astrophys. Space Sci. 342, 257-267 (2012). https://doi.org/10.1007/s10509-012-1155-x

H. Amirhashchi, et al., “Interacting Two-Fluid Viscous Dark Energy Models In Non-Flat Universe,” Res. in Astron. Astrophys 13(2), 129-138 (2013). https://doi.org/10.1088/1674-4527/13/2/001

A. Amirhashchi, et al., “Two-Fluid Dark Energy Models in Bianchi Type-III Universe with Variable Deceleration Parameter,” Int. J. Theor Phys. 52, 2735-2752 (2013). https://doi.org/10.1007/s10773-013-1566-7

A. Einstein, “Sitzungsber. Preuss. Akad. Wiss. Berlin,” Phys. Math. Kl. 17, 217 (1928).

Aю Einstein, “Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie”, Math. Ann. 102, 685 (1930).

G. Bengochea, “Observational information for f (T) theories and Dark Torsion,” Phys. Lett. B. 695, 405-411 (2011). https://doi.org/10.1016/j.physletb.2010.11.064

B. Li, T. Sotiriou, and J. Barrow, “Large –scale structure in f (T) gravity,” Phys. Rev. D, 83, 104017 (2011). https://doi.org/10.1103/PhysRevD.83.104017

S. Chen, J. Dent, S. Dutta, and E. Saridakis, “Cosmological perturbations in gravity,” Phys. Rev. D, 83, 023508 (2011). https://doi.org/10.1103/PhysRevD.83.023508

K. Karami, and A. Abdolmaleki, “Polytropic and Chaplygin f (T)-gravity models,” J. Phys. Conf. Ser. 375, 032009 (2012). https://iopscience.iop.org/article/10.1088/1742-6596/375/1/032009/pdf

M. Jamil, D. Momeni, and R. Myrzakulov, “Resolution of dark matter problem in f (T) gravity,” Eur. Phys. J. C, 72, 2122 (2012). https://doi.org/10.1140/epjc/s10052-012-2122-y

M. Jamil, K. Yesmakhanova, D. Momeni, and R. Myrzakulov, “Phase space analysis of interacting dark energy in f (T) cosmology,” Cen. Eur. J. Phys. 10, 1065-1071 (2012). https://doi.org/10.2478/s11534-012-0103-2

M. Setare, and F. Darabi, “Power-law solutions in f (T) gravity,” Gen. Rel. Grav. 44, 2521-2527 (2012). https://doi.org/10.1007/s10714-012-1408-6

M. Setare, and M. Houndjo, “Finite-time future singularity models in f (T) gravity and the effects of viscosity,” Can. J. Phys. 91, 260–267 (2013). https://doi.org/10.1139/cjp-2012-0533

V. Chirde, and S. Sheikh, “Barotropic Bulk Viscous FRW Cosmological Model in Teleparallel Gravity,” Bulg. J. Phys. 41, 258 (2014). https://www.bjp-bg.com/papers/bjp2014_4_258-273.pdf

K. Maniharsingh, “Slowly rotating universes with radiating perfect fluid distribution coupled with a scalar field in general relativity,” Gen. Rel. Grav. 27, 1145-1165 (1995). https://doi.org/10.1007/BF02108230

K. Singh, and K. Bhamra, “Radiating viscous universes coupled with zero-mass scalar field: Exact solutions,” Int. J. Theor. Phys. 29, 10151029 (1990). https://doi.org/10.1007/BF00673688

K. Singh, “Some rotating perfect fluid universes coupled with electromagnetic field interacting with gravitation,” Astrophys. Space Sci. 325, 127-135 (2010). https://doi.org/10.1007/s10509-009-0153-0

K. Singh, “Rotational perturbations of radiating Universes coupled with zero-mass scalar field,” Astrophys. Space Sci. 325, 293-302 (2010). https://doi.org/10.1007/s10509-009-0188-2

R. Singh, and S. Deo, “Zero-mass scalar field interactions in the Robertson-Walker universe,” Acta Physica Hungarica, 59, 321 325 (1986). https://doi.org/10.1007/BF03053778

S. Katore, A. Shaikh, M. Sancheti, and J. Pawade, “Einstein Rosen Bulk Viscous Cosmological Solutions with Zero Mass Scalar Field in Lyra Geometry,” Prespacetime Jour. 3, 83 (2012). https://prespacetime.com/index.php/pst/article/view/319/327

V. Chirde, and P. Rahate, “FRW Cosmological Solution in Self Creation Theory,” Int. J. Theor. Phys. 51, 2262-2271 (2012). https://doi.org/10.1007/s10773-012-1106-x

O. Akarsu, and C. Kilinc, “LRS Bianchi type I models with Anisotropic Dark Energy and Constant Deceleration Parameter,” General Relativity and Gravitation,” Gen. Relativ. Gravit. 42, 119 (2010). https://doi.org/10.1007/s10714-009-0821-y

S. Kumar, and A. Yadav, “Some Bianchi Type-V Models of Accelerating Universe with Dark Energy,” Mod. Phys. Lett. A, 26, 647-659 (2011). https://doi.org/10.1142/S0217732311035018

Published
2025-09-08
Cited
How to Cite
Raut, V. B., & Salve, S. A. (2025). FLRW model coupled with mass less scalar field in f(T) gravity-Two fluid scenario. East European Journal of Physics, (3), 17-25. https://doi.org/10.26565/2312-4334-2025-3-02