Constrained Dynamics of Holographic Dark Energy in Modified f (R) Gravity

  • A.Y. Shaikh Department of Mathematics, Indira Gandhi Kala Mahavidyalaya, Ralegaon, (M.S.) India https://orcid.org/0000-0001-5315-559X
  • A.P. Jenekar Department of Mathematics, Arts, Commerce and Science College, Maregaon, (M.S.) India https://orcid.org/0009-0005-8928-3725
  • S.M. Shingne Department of Mathematics, G. S. Science, Arts and Commerce College, Khamgaon, (M.S.) India
Keywords: Hypersurface-homogeneous space time, f(R) gravity, Holographic dark energy

Abstract

In the present work, we examine the dynamical behaviour of holographic dark energy (HDE) within the framework of modified f(R) gravity in a hypersurface-homogeneous space-time. To explore the universe's evolutionary behaviour under the influence of dark energy, we consider both exponential and power-law expansions. The cosmic evolution is analysed using standard cosmological diagnostics, including the density parameter and equation of state (EoS) parameter along with the deceleration parameter. Furthermore, the statefinder diagnostic pair is tested to detect precisely different phases of the universe. The squared speed of sound parameter was used to incorporate the stability analysis for our models. This investigation links the principles of quantum gravity to cosmology, producing testable predictions for forthcoming research and illustrating that HDE functions as a credible alternative to ΛCDM.

Downloads

Download data is not yet available.

Author Biography

S.M. Shingne, Department of Mathematics, G. S. Science, Arts and Commerce College, Khamgaon, (M.S.) India

Assistant Professor

References

A.G. Riess, et al., Astron. J. 116, 1009 1998). https://doi.org/10.1086/300499

A.G. Riess, et al., Astron. J. 117, 707 (1999). https://doi.org/10.1086/300738

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

P. De Bernardis, et al., Nature, 404, (2000). https://doi.org/10.1038/35010035

E. Komatsu, et al., Astrophys. J. Suppl. Ser. 192, 18 (2011). http://dx.doi.org/10.1088/0067-0049/180/2/330

M. Tegmark, et al., Phys. Rev. D, 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501

U. Seljak, et al., Phys. Rev. D, 71, 103515 (2005). https://doi.org/10.1103/PhysRevD.71.103515

K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

M. Sharif and M. Zubair, Astrophys. Space Sci. 330, 399 (2010). https://doi.org/10.1007/s10509-010-0414-y

S.M. Carroll, W.H. Press, and E.L. Turner, Annu. Rev. Astron. Astrophys. 30, 499 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002435

M.S. Turner, and M. White, Phys. Rev. D, 56, R4439 (1997). https://doi.org/10.1103/PhysRevD.56.R4439

V. Sahni, and L. Wang, Phys. Rev. D, 62, 103517 (2000). https://doi.org/10.1103/PhysRevD.62.103517

A.G. Cohen, D.B. Kaplan, and A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

M. Li, Physics Letters B, 603, 1-2 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

V.C. Dubey, and U.K. Sharma, New Astron. 86, 101586 (2021). https://doi.org/10.1016/j.newast.2021.101586

S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys. Lett. B, 664, 12 (2008). https://doi.org/10.1016/j.physletb.2008.04.061

S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 659, 821 (2008). https://doi.org/10.1016/j.physletb.2007.12.001

D.D. Pawar, R.V. Mapari, and P.K. Agrawal, J. Astrophys. Astron. 40, 13 (2019). https://doi.org/10.1007/s12036-019-9582-5

S.D. Katore, and S.V. Gore, J. Astrophys. Astron. 41, 12 (2020). https://doi.org/10.1007/s12036-020-09632-z

C.P. Singh, and A. Beesham, Gravit. Cosmol. 17, 284 (2011). https://doi.org/10.1134/S020228931103008X

H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1

A.A. Starobinsky, JETP Lett. 86, 157 (2007). https://doi.org/10.1134/S0021364007150027

P.A.R. Ade, et al., A&A, 571, A22 (2014). https://doi.org/10.1051/0004-6361/201321569

S.D. Katore, and A.Y. Shaikh, Astrophys. Space Sci. 357, 27 (2015). https://doi.org/10.1007/s10509-015-2297-4

S.H. Shekh, and K. Ghaderi, Phys. Dark Universe 31, 100785 (2021). https://doi.org/10.1016/j.dark.2021.100785

T. Vinutha, K.V. Vasavi, and K.S. Kavya, Int. J. Geom. Methods Mod. Phys. 20, 2350119 (2023). https://doi.org/10.1142/S0219887823501190

L.N. Granda, and A. Oliveros, Phys. Lett. B, 669, 275 (2008). https://doi.org/10.1016/j.physletb.2008.10.017

S. Kumar, and C.P. Singh, Astrophys. Space Sci. 312, 57 (2007). https://doi.org/10.1007/s10509-007-9623-4

C.P. Singh, S. Ram, and M. Zeyauddin, Astrophys. Space Sci. 315, 181 (2008). https://doi.org/10.1007/s10509-008-9811-x

J.P. Singh, and P.S. Baghel, Int. J. Theor. Phys. 48, 449 (2009). https://doi.org/10.1007/s10773-008-9820-0

Ö. Akarsu, and C.B. Kılınç, Gen. Relativ. Gravit. 42, 119 (2009). https://doi.org/10.1007/s10714-009-0821-y

Ö. Akarsu, and C.B. Kılınç, Gen. Relativ. Gravit. 42, 763 (2010). https://doi.org/10.1007/s10714-009-0878-7

K.S. Adhav, et al., Astrophys. Space Sci. 332, 497 (2011). https://doi.org/10.1007/s10509-010-0519-3

V.B. Johri, and K. Desikan, Gen. Relativ. Gravit. 26, 1217 (1994). https://doi.org/10.1007/BF02106714

K. Uddin, J.E. Lidsey, and R. Tavakol, Class. Quantum Gravity, 24, 3951 (2007). https://doi.org/10.1088/0264-9381/24/15/012

M. Sharif and M.F. Shamir, Class. Quantum Gravity, 26, 235020 (2009). https://doi.org//10.1088/0264-9381/26/23/235020

M. Sharif and M.F. Shamir, Mod. Phys. Lett. A, 25, 1281 (2010). https://doi.org/10.1142/S0217732310032536

S.D. Katore, et al., Commun. Theor. Phys. 62, 768 (2014). https://doi.org/10.1088/0253-6102/62/5/21

Y. Younesizadeh, and A. Rezaie, Int. J. Mod. Phys. A, 37, 2250040 (2022). https://doi.org/10.1142/S0217751X22500403

V. Sahni, et al., J. Phys. Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831

L. Perivolaropoulos and F. Skara, New Astron. Rev. 95, 101659 (2022). https://doi.org/10.1016/j.newar.2022.101659

P.A.R. Ade, et al., Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201525830

R.A. Knop, et al., Astrophys. J. 598, 102 (2003). https://doi.org/10.1086/378560

V.U.M. Rao, and D. Neelima, Eur. Phys. J. Plus, 128, 35 (2013). https://doi.org/10.1140/epjp/i2013-13035-y

Planck Collaboration, et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

G.C. Samanta, Int. J. Theor. Phys. 52, 4389 (2013). https://doi.org/10.1007/s10773-013-1757-2

S. Sarkar, and C.R. Mahanta, Int. J. Theor. Phys. 52, 1482 (2013). https://doi.org/10.1007/s10773-012-1468-0

C. Zhang, et al., Res. Astron. Astrophys. 14, 1221 (2014). https://doi.org/10.1088/1674-4527/14/10/002

J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D, 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001

M. Moresco, et al., J. Cosmol. Astropart. Phys. 006 (2012). https://doi.org/10.1088/1475-7516/2012/08/006

M. Moresco, et al., J. Cosmol. Astropart. Phys. 014 (2016). https://dx.doi.org/10.1088/1475-7516/2016/05/014

A.L. Ratsimbazafy, et al., Mon. Not. R. Astron. Soc. 467, 3239 (2017). https://doi.org/10.1093/mnras/stx301

S. Capozziello, S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 781, 99 (2018). https://doi.org/10.1016/j.physletb.2018.03.064

V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831

U. Alam, et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003). https://doi.org/10.1103/PhysRevD.68.127501

Y.B. Wu, et al., Gen. Relativ. Gravit. 39, 653 (2007). https://doi.org/10.1007/s10714-007-0412-8

A.Y. Shaikh, Eur. Phys. J. Plus, 138, 301 (2023). https://doi.org/10.1140/epjp/s13360-023-03931-4

J. Sadeghi, A.R. Amani, and N. Tahmasbi, Astrophys. Space Sci. 348, 559 (2013). https://doi.org/10.1007/s10509-013-1579-y

Published
2025-09-08
Cited
How to Cite
Shaikh, A., Jenekar, A., & Shingne, S. (2025). Constrained Dynamics of Holographic Dark Energy in Modified f (R) Gravity. East European Journal of Physics, (3), 4-16. https://doi.org/10.26565/2312-4334-2025-3-01