Impact of Boron Doping on Charge Distribution and Thermal Conductivity in Double-Walled Carbon Nanotubes

  • Shahnozakhon Muminova Denov Institute of Entrepreneurship and Pedagogy, Denov City, Uzbekistan
  • Abror Ulukmuradov Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan https://orcid.org/0000-0002-7135-9673
  • Xamid Isayev Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan
  • Dildora Mamayeva Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan
  • Utkir Uljaev Denov Institute of Entrepreneurship and Pedagogy, Denov City, Uzbekistan; Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan https://orcid.org/0009-0002-2564-5270
Keywords: Double-walled carbon nanotube, Boron doping, Reactive molecular dynamics

Abstract

This study investigates the effect of boron (B) doping on the electrical and thermal conductivity properties of single-walled carbon nanotubes (DWNTs) at various temperatures (300 K to 1500 K). The incorporation of boron atoms into DWNTs (5,5)@(10,10) was analyzed to explore how different doping levels (ρ%) influence the partial charge distribution and thermal conductivity. Our findings show that boron doping increases the partial charge within the nanotube structure, with a nonlinear increase in charge as the doping concentration rises from 0% to 10%. This is due to the lower electronegativity of boron, which introduces hole carriers and enhances p-type semiconductor behavior. However, at higher doping concentrations (above 5%), defects disrupt the π-electron network, reducing electrical conductivity. Thermal conductivity experiments indicate that the presence of boron leads to a decrease in heat transfer efficiency, especially at higher doping levels (>6%), where defect-induced phonon scattering significantly reduces the thermal conductivity. The results demonstrate that boron doping has a complex impact on the structural, electronic, and thermal properties of DWNTs, with temperature and doping concentration playing critical roles in determining performance.

Downloads

Download data is not yet available.

References

S. Iijima, "Carbon nanotubes: past, present, and future," Phys. B: Condens. Matter 323, 1-5 (2002). https://doi.org/10.1016/S0921-4526(02)00869-4

S. Rathinavel, K. Priyadharshini, and D. Panda, "A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application," Mater. Sci. Eng. B 268, 115095 (2021). https://doi.org/10.1016/j.mseb.2021.115095

S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, 56-58 (1991). https://doi.org/10.1038/354056a0

K.E. Moore, D.D. Tune, and B.S. Flavel, "Double‐Walled Carbon Nanotube Processing," Adv. Mater. 27, 3105 (2015). https://doi.org/10.1002/adma.201405686

N. Anzar, R. Hasan, M. Tyagi, N. Yadav, and J. Narang, "Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science," Sens. Int. 1, 100003 (2020). https://doi.org/10.1016/j.sintl.2020.100003

J.H. Kim, T.V. Pham, J.H. Hwang, C.S. Kim, and M.J. Kim, "Boron nitride nanotubes: synthesis and applications, Nano Converg. 5, 17 (2018). https://doi.org/10.1186/s40580-018-0149-y

P. Castrucci, M. Scarselli, M. De Crescenzi, M. Diociaiuti, Prajakta S. Chaudhari, C. Balasubramanian, et al., "Silicon nanotubes: Synthesis and characterization," Thin Solid Films, 508(1-2), 226-230 (2006), https://doi.org/10.1016/j.tsf.2005.07.348

S.V. Sawant, A.W. Patwardhan, J.B. Joshi, and K. Dasgupta, "Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review," Chem. Eng. J. 427, 131616 (2022). https://doi.org/10.1016/j.cej.2021.131616

U. Khalilov, U. Uljayev, K. Mehmonov, P. Nematollahi, M. Yusupov, and E. Neyts, "Can endohedral transition metals enhance hydrogen storage in carbon nanotubes?" Int. J. Hydrog. Energy, 55, 604-610 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.195

U.B. Uljaev, S.A. Muminova, and I.D. Yadgarov, "Nitrogen Adsorption on Double-Walled Carbon Nanotube at Different Temperatures: Mechanistic Insights from Molecular Dynamics Simulations," East Eur. J. Phys. (1), 361-365 (2024). https://doi.org/10.26565/2312-4334-2024-1-34

M.F. Naief, S.N. Mohammed, H.J. Mayouf, and A.M. Mohammed, "A review of the role of carbon nanotubes for cancer treatment based on photothermal and photodynamic therapy techniques," J. Organomet. Chem. 999, 122819 (2023). https://doi.org/10.1016/j.jorganchem.2023.122819

A. Ali, S.S. Rahimian Koloor, A.H. Alshehri, and A. Arockiarajan, "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review," J. Mater. Res. Technol. 24, 6495-6521 (2023). https://doi.org/10.1016/j.jmrt.2023.04.072

M. Soto, T.A. Boyer, S. Biradar, L. Ge, R. Vajtai, A. Elías-Zúñiga, P.M. Ajayan, and E.V. Barrera, "Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes," Nanotechnology, 26, 165201 (2015). https://doi.org/10.1088/0957-4484/26/16/165201

Y. Yao, R. Shen, J. Xu, and Z. Feng, "Progress in electrochemical sensing of epinephrine using carbon nanomaterials: A review," Int. J. Electrochem. Sci. 19, 100750 (2024). https://doi.org/10.1016/j.ijoes.2024.100750

M. Sajid, M. Asif, N. Baig, M. Kabeer, I. Ihsanullah, and A.W. Mohammad, "Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification," J. Water Process Eng. 47, 102815 (2022). https://doi.org/10.1016/j.jwpe.2022.102815

D. Liu, L. Shi, Q. Dai, X. Lin, R. Mehmood, Z. Gu, and L. Dai, "Functionalization of carbon nanotubes for multifunctional applications," Trends Chem. 6, 186-210 (2024). https://doi.org/10.1016/j.trechm.2024.02.002

M. Adamska, and U. Narkiewicz, "Fluorination of Carbon Nanotubes − A Review," J. Fluor. Chem. 200, 179-189 (2017). https://doi.org/10.1016/j.jfluchem.2017.06.018

D. Silambarasan, V.J. Surya, V. Vasu, and K. Iyakutti, "Experimental investigation of hydrogen storage in single walled carbon nanotubes functionalized with borane," Int. J. Hydrog. Energy, 36, 3574-3579 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.028

Y. Tison, et al., "Identification of Nitrogen Dopants in Single-Walled Carbon Nanotubes by Scanning Tunneling Microscopy," ACS Nano, 7, 7219-7226 (2013). https://doi.org/10.1021/nn4026146

S.H. De Paoli Lacerda, J. Semberova, K. Holada, O. Simakova, S. D. Hudson, and J. Simak, "Carbon Nanotubes Activate Store-Operated Calcium Entry in Human Blood Platelets," ACS Nano, 5, 5808-5813 (2011). https://doi.org/10.1021/nn2015369

H. Wu, D. Wexler, and H. Liu, "Effects of different palladium content loading on the hydrogen storage capacity of double-walled carbon nanotubes," Int. J. Hydrog. Energy 37, 5690 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.120

L.G. Bulusheva, Y.V. Fedoseeva, E. Flahaut, J. Rio, C.P. Ewels, V.O. Koroteev, G. Van Lier, et al., "Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes," Beilstein J. Nanotechnol. 8, 1688-1698 (2017). https://doi.org/10.3762/bjnano.8.169

L.G. Bulusheva, A.V. Okotrub, E. Flahaut, I.P. Asanov, P.N. Gevko, V.O. Koroteev, Yu.V. Fedoseeva, et al., "Bromination of Double-Walled Carbon Nanotubes," Chem. Mater. 24, 2708-2715 (2012). https://doi.org/10.1021/cm3006309

D. Xia, Y. Luo, Q. Li, Q. Xue, X. Zhang, C. Liang, and M. Dong, "Extracting the inner wall from nested double-walled carbon nanotube by platinum nanowire: molecular dynamics simulations," RSC Adv. 7, 39480 (2017). https://doi.org/10.1039/C7RA07066G

U. Uljayev, S. Muminova, K. Mehmonov, I. Yadgarov, and A. Ulukmuradov, "Boron interaction with double-walled carbon nanotubes across temperature ranges," Mod. Electron. Mater. 10, 3 (2024). https://doi.org/10.3897/j.moem.10.3.131526

S.V. Boroznin, "Carbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications," Mod. Electron. Mater. 8, 23-42 (2022). https://doi.org/10.3897/j.moem.8.1.84317

M. Sireesha, V.J. Babu, A.S. Kiran, and S. Ramakrishna, "A review on carbon nanotubes in biosensor devices and their applications in medicine," Nanocomposites 4, 36 (2018). https://doi.org/10.1080/20550324.2018.1478765

L. Wirtz, and A. Rubio, "Band structure of boron doped carbon nanotubes," 685, 402-405 (2003). https://doi.org/10.1063/1.1628059

J. Saloni, W. Kolodziejczyk, S. Roszak, D. Majumdar, G. Hill, Jr., J. Leszczynski, "Local and Global Electronic Effects in Single and Double Boron-Doped Carbon Nanotubes," J. Phys. Chem. C, 114(3), 1528–1533 (2010). https://doi.org/10.1021/jp910625w

D. Jana, C.-L. Sun, L.-C. Chen, and K.-H. Chen, "Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes," Prog. Mater. Sci. 58, 565-635 (2013). https://doi.org/10.1016/j.pmatsci.2013.01.003

T.-J. Li, et al., "Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction," Sens. Actuators B: Chem. 248, 288-297 (2017). https://doi.org/10.1016/j.snb.2017.03.118

P. Ayala, J. Reppert, M. Grobosch, M. Knupfer, T. Pichler, and A. Rao, "Evidence for substitutional boron in doped single-walled carbon nanotubes," Appl. Phys. Lett. 96, 183110 (2010). https://doi.org/10.1063/1.3427432

S. Parham, Heteroatom-Doped Carbon Allotropes in Solar Cells Application, in Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications, vol. 1491, (American Chemical Society, 2024), pp. 127–149.

S.V. Sawant, S. Banerjee, A.W. Patwardhan, J.B. Joshi, and K. Dasgupta, "Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes," Int. J. Hydrog. Energy 44, 18193-18204 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.029

W. Han, Y. Bando, K. Kurashima, and T. Sato, "Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction," Appl. Phys. Lett. 73, 3085-3087 (1998). https://doi.org/10.1063/1.122680

C.F. Chen, C.L. Tsai, and C.L. Lin, "The characterization of boron-doped carbon nanotube arrays," Diam. Relat. Mater. 12, 1500 1504 (2003). https://doi.org/10.1016/S0925-9635(03)00181-X

Z. Wang, C.H. Yu, D. Ba, and J. Liang, "Influence of the gas composition on the synthesis of boron-doped carbon nanotubes by ECR-CVD," Vacuum, 81, 579-582 (2007). https://doi.org/10.1016/j.vacuum.2006.05.012

X. Blase, J.-C. Charlier, A. De Vita, R. Car, Ph. Redlich, M. Terrones, W. K. Hsu, et al., "Boron-Mediated Growth of Long Helicity-Selected Carbon Nanotubes," Phys. Rev. Lett. 83, 5078 (1999). https://doi.org/10.1103/PhysRevLett.83.5078

L.E. Jones, and P.A. Thrower, "Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior," Carbon, 29, 251-269 (1991). https://doi.org/10.1016/0008-6223(91)90076-U

M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, H. Terrones, et al., New direction in nanotube science, Mater. Today 7, 30 (2004). https://doi.org/10.1016/S1369-7021(04)00447-X

A.P. Thompson, et al., "LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales," Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171

J.E. Mueller, A.C.T. van Duin, and W.A.I. Goddard, "Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel," J. Phys. Chem. C 114, 4939-4949 (2010). https://doi.org/10.1021/jp9035056

J.R. Lukes, and H. Zhong, "Thermal Conductivity of Individual Single-Wall Carbon Nanotubes," J. Heat Transf. 129, 705-716 (2007). https://doi.org/10.1115/1.2717242

A.T. Zahra, A. Shahzad, A. Manzoor, J. Razzokov, Q.U.A. Asif, K. Luo, and G. Ren, "Structural and thermal analyses in semiconducting and metallic zigzag single-walled carbon nanotubes using molecular dynamics simulations," PLOS ONE 19, e0296916 (2024). https://doi.org/10.1371/journal.pone.0296916

G. Chen, S. Bandow, E.R. Margine, C. Nisoli, A.N. Kolmogorov, V.H. Crespi, R. Gupta, G.U. Sumanasekera, et al., "Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors," Phys. Rev. Lett. 90, 257403 (2003). https://doi.org/10.1103/PhysRevLett.90.257403

K. Mehmonov, A. Ergasheva, M. Yusupov, and U. Khalilov, "The role of carbon monoxide in the catalytic synthesis of endohedral carbyne," J. Appl. Phys. 134, 144303 (2023). https://doi.org/10.1063/5.0160892

H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola, and J.R. Haak, "Molecular dynamics with coupling to an external bath," J. Chem. Phys. 81, 3684-3690 (1984). https://doi.org/10.1063/1.448118

J. Sun, P. Liu, M. Wang, and J. Liu, "Molecular Dynamics Simulations of Melting Iron Nanoparticles with/without Defects Using a Reaxff Reactive Force Field," Sci. Rep. 10, 3408 (2020). https://doi.org/10.1038/s41598-020-60416-5

G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," J. Chem. Phys. 126, 014101 (2007). https://doi.org/10.1063/1.2408420

Y.-K. Kwon, and P. Kim, Unusually High Thermal Conductivity in Carbon Nanotubes, in High Thermal Conductivity Materials, edited by S.L. Shindé, and J.S. Goela (Springer, New York, NY, 2006), pp. 227–265.

A. Sharma, A. Patwardhan, K. Dasgupta, and J.B. Joshi, "Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition," Chem. Eng. Sci. 207, 1341-1352 (2019). https://doi.org/10.1016/j.ces.2019.06.030

M.M.S. Fakhrabadi, A. Allahverdizadeh, V. Norouzifard, and B. Dadashzadeh, "Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes," Solid State Commun. 152, 1973-1979 (2012). https://doi.org/10.1016/j.ssc.2012.08.003

P. Ayala, et al., "Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock," J. Phys. Chem. C 111, 2879-2884 (2007). https://doi.org/10.1021/jp0658288

W. Su, X. Li, L. Li, D. Yang, F. Wang, X. Wei, W. Zhou, et al., "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nat. Commun. 14, 1672 (2023). https://doi.org/10.1038/s41467-023-37443-7

U. Khalilov, A. Bogaerts, B. Xu, T. Kato, T. Kaneko, and E. C. Neyts, "How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching," Nanoscale, 9, 1653-1616 (2017). https://doi.org/10.1039/C6NR08005G

N.R. Abdullah, H.O. Rashid, M.T. Kareem, C.-S. Tang, A. Manolescu, and V. Gudmundsson, "Effects of bonded and non-bonded B/N codoping of graphene on its stability, interaction energy, electronic structure, and power factor," Phys. Lett. A 384, 126350 (2020). https://doi.org/10.1016/j.physleta.2020.126350

X. Sha, B. Jackson, and D. Lemoine, "Quantum studies of Eley–Rideal reactions between H atoms on a graphite surface," J. Chem. Phys. 116, 7158-7169 (2002). https://doi.org/10.1063/1.1463399

T. Zecho, A. Güttler, X. Sha, D. Lemoine, B. Jackson, and J. Küppers, "Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms," Chem. Phys. Lett. 366, 188-195 (2002). https://doi.org/10.1016/S0009-2614(02)01573-7

Published
2025-09-08
Cited
How to Cite
Muminova, S., Ulukmuradov, A., Isayev, X., Mamayeva, D., & Uljaev, U. (2025). Impact of Boron Doping on Charge Distribution and Thermal Conductivity in Double-Walled Carbon Nanotubes. East European Journal of Physics, (3), 390-397. https://doi.org/10.26565/2312-4334-2025-3-40