Examination of (t, 3He) Charge Exchange Reactions: Incorporating Knock-On Exchange and Tensor Force Terms Effects

  • Ankita Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India https://orcid.org/0000-0001-5769-2907
  • Pardeep Singh Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India https://orcid.org/0000-0003-2100-3772
Keywords: Gamow-Teller transitions, Charge Exchange Reaction, Tensor forces, Distorted Wave Impulse Approximation, Angular Distribution, Unit cross-section

Abstract

The present study employs DWIA (Distorted Wave Impulse Approximation) framework, allows to investigate the influence of knock-on exchange effects together with tensor force contributions while examining the charge exchange reactions. Here, the differential cross-section and unit cross-section for (t, ³He) charge-exchange reactions on 12C, 13C, 26Mg and 58Ni targets have been computed. The obtained results demonstrate that consideration of knock-on exchange terms substantially decreases the estimated cross-section. Furthermore, the tensor forces contribution introduces an additional layer of complexity to the analysis of charge exchange reactions. Depending on the target nucleus, the tensor forces contribution produces either constructive or destructive interference effects, which leads to either increment or decrement in cross-section magnitude based on the target nucleus. The predicted unit cross-sections agree with corresponding experimental data but show specific deviations because of tensor interactions which are most pronounced in 58Ni.

Downloads

Download data is not yet available.

References

T.N. Taddeucci, et al., Nucl. Phys. A 469, 125 (1987), https://doi.org/10.1016/0375-9474(87)90089-3

M.N. Harakeh, and A.V. Woude, Giant Resonances: Fundamental High Frequency Modes of Nuclear Excitations, (Oxford University, New York, 2001).

B. Gao, et al., Phys. Rev. C 101, 014308 (2020), https://doi.org/10.1103/PhysRevC.101.014308

J. J. Li, et al., Phys. Rev. C 102, 064601 (2020), https://doi.org/10.1103/PhysRevC.102.064601

Y. Fujita, et al., Phys. Rev. C 67, 064312 (2003), https://doi.org/10.1103/PhysRevC.67.064312

B. T. Kim, et al., Phys. Rev. C 61, 044611 (2000), https://doi.org/10.1103/PhysRevC.61.044611

D. T. Khoa, et al., Phys. Rev. C 76, 014603 (2007), https://doi.org/10.1103/PhysRevC.76.014603

D. Vale, et al., Phys. Rev. C 103, 064307 (2021), https://doi.org/10.1103/PhysRevC.103.064307

D. Gambacurta, et al., Phys. Rev. Lett. 125, 212501 (2020), https://doi.org/10.1103/PhysRevLett.125.212501

F. T. Avignone, et al., Rev. Mod. Phys. 80, 481 (2008), https://doi.org/10.1103/RevModPhys.80.481

J. Engel, et al., Rep. Prog. Phys. 80, 046301 (2017), https://doi.org/10.1088/1361-6633/aa5bc5

J. Menendez, et al., J. Phys. G 45, 014003 (2017), https://doi.org/10.1088/1361-6471/aa9bd4

F. Cappuzzello, et al., Prog. Part. Nucl. Phys. 128, 103999 (2023), https://doi.org/10.1016/j.ppnp.2022.103999

A. L. Cole, et al., Phys. Rev. C 74, 034333 (2006), https://doi.org/10.1103/PhysRevC.74.034333

Y. Fujita, et al., Phys. Rev. C 70, 011306(R) (2004), https://doi.org/10.1103/PhysRevC.70.011306

F. Diel, et al., Phys. Rev. C 99, 054322 (2019). https://doi.org/10.1103/PhysRevC.99.054322

H. Fujita, et al., Phys. Rev. C 100, 034618 (2019), https://doi.org/10.1103/PhysRevC.100.034618

J. C. Zamora, et al., Phys. Rev. C 100, 032801 (2019), https://doi.org/10.1103/PhysRevC.100.032801

S. Noji, et al., Phys. Rev. C 92, 024312 (2015), https://doi.org/10.1103/PhysRevC.92.024312

R.G.T. Zegers, et al., Phys. Rev. C 74, 024309 (2006), https://doi.org/10.1103/PhysRevC.74.024309

T. Udagawa, A. Schulte, and F. Osterfeld, Nucl. Phys. A, 474, 131 (1987). https://doi.org/10.1016/0375-9474(87)90197-7

G. Perdikakis, et al., Phys. Rev. C, 83, 054614 (2011). https://doi.org/10.1103/PhysRevC.83.054614

R.G.T. Zegers, et al., Phys. Rev. Letts. 99, 202501 (2007). https://doi.org/10.1103/PhysRevLett.99.202501

R. Titus, et al., J. Phys. G: Nucl. Part. Phys. 45, 014004 (2017). https://doi.org/10.1088/1361-6471/aa98c1

R. Titus, et al., Phys. Rev. C, 100, 045805 (2019). https://doi.org/10.1103/PhysRevC.100.045805

A. L. Cole, et al., Phys. Rev. C, 86, 015809 (2012). https://doi.org/10.1103/PhysRevC.86.015809

G.W. Hitt, et al., Nuclear Instruments and Methods in Physics Research A 566, 264 (2006). https://doi.org/10.1016/j.nima.2006.07.045

B. T. Kim, et al., Phys. Rev. C, 61, 044611 (2000). https://doi.org/10.1103/PhysRevC.61.044611

A. Schulte, et al., Phys. Lett. B, 183, 243 (1987). https://doi.org/10.1016/0370-2693(87)90956-7

Ankita, and P. Singh, Mod. Phys. Lett. A, 38, 2350066 (2023). https://doi.org/10.1142/S0217732323500669

Riken, https://www.nishina.riken.jp/researcher/archive/program, Nishina center for accelerator-based science.

P. Singh, et al., Mod. Phys. Lett. A, 35, 2020045 (2020). https://doi.org/10.1142/S0217732320500455

W.G. Love, and M.A. Franey, et al., Phys. Rev. C, 24, 1073 (1981). https://doi.org/10.1103/PhysRevC.24.1073

M.A. Franey, and W.G. Love, et al., Phys. Rev. C, 31, 488 (1985). https://doi.org/10.1103/PhysRevC.31.488

H. Fujimura, et al., Phys. Rev. C 69, 064327 (2004). https://doi.org/10.1103/PhysRevC.69.064327

T. Yamagata, et al., Nucl. Phys. A 589, 425 (1995). https://doi.org/10.1016/0375-9474(95)00071-8

S. Y. Van Der Werf et al., Nucl. Phys. A 496, 305 (1989). https://doi.org/10.1016/0375-9474(89)90177-2

J. Kamiya, et al., Phys. Rev. C, 67, 064612 (2003). https://doi.org/10.1103/PhysRevC.67.064612

M. Honma, et al., Phys. Rev. C, 69, 034335 (2004). https://doi.org/10.1103/PhysRevC.69.034335

C.A. Douma, et al., Eur. Phys. J. A, 56, 51 (2020). https://doi.org/10.1140/epja/s10050-020-00044-9

S.C. Pieper, et al., Annu. Rev. Nucl. Part. Sci. 51, 53 (2001). https://doi.org/10.1146/annurev.nucl.51.101701.132506

C.J. Guess, et al., Phys. Rev. C, 80, 024305 (2009). https://doi.org/10.1103/PhysRevC.80.024305

Published
2025-06-09
Cited
How to Cite
Ankita, & Singh, P. (2025). Examination of (t, 3He) Charge Exchange Reactions: Incorporating Knock-On Exchange and Tensor Force Terms Effects. East European Journal of Physics, (2), 49-54. https://doi.org/10.26565/2312-4334-2025-2-06