Study of the Coulomb Nuclear Interference of 23Al Breakup Reaction with Different Targets

Keywords: Coulomb nuclear interference, Proton halo, LMD, Proton breakup, One proton-removal cross-section

Abstract

The impact of Coulomb-diffraction interference on the one-proton removal breakup cross-section and the width of the longitudinal momentum distribution (LMD) has been investigated for the breakup reaction of the $^{23}$Al nucleus with different light to the heavy target for energy 40-100MeV/nucleon. Sensitivity to the target size and incident energy was analyzed through calculations that incorporate Coulomb interactions to all orders, including the full multipole expansion and nuclear diffraction using the eikonal approximation in the Glouber model. The results indicate that both constructive and destructive interferences significantly impact the observables, with the effects being more pronounced for medium-mass targets than light or heavy targets.

Downloads

Download data is not yet available.

Author Biography

Ravinder Kumar, Deenbandhu Chhotu Ram University of Science and Technology, Murthal(Sonipat), 131039, Haryana,INDIA

Department of Physics and working as  professor (assistant)

References

I. Tanihata, et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

I. Tanihata, et al., Physics Letters B, 160(6), 380, (1985). https://doi.org/10.1016/0370-2693(85)90005-X

T. Nakamura, et al., Physical Review C, 79(3), 035805 (2009). https://doi.org/10.1103/PhysRevC.79.035805

G. Baur, et al., Progress in Particle and Nuclear Physics, 51(2), 487 (2003). http://dx.doi.org/10.1016/S0146-6410(03)90006-8

G. Baur, et al., Progress in particle and nuclear physics, 59(1), 122 (2007). https://doi.org/10.1016/j.ppnp.2006.12.002

L.V. Grigorenko, et al., Physics Letters B, 641(3-4), 254 (2006). https://doi.org/10.1016/j.physletb.2006.08.054

C.A. Bertulani, et al., Physics Reports, 485(6), 1959 (2010). https://doi.org/10.1016/j.physrep.2009.09.002

L. Trache, et al., Physical review letters, 87(27), 271102 (2001). https://doi.org/10.1103/PhysRevLett.87.271102

L.Trache et al., Physical Review C, 66(3), 035801 (2002). https://doi.org/10.1103/PhysRevC.66.035801

V.E. Iacob, et al., Physical Review C, 74(4), 045810 (2006). https://doi.org/10.1103/PhysRevC.74.045810

S.S. Chandel, et al., Physical Review C, 68(5), 054320 (2003). https://doi.org/10.1103/PhysRevC.68.054320

M.M. Khansari, et al., New Astronomy, 57, 76 (2017). https://doi.org/10.1016/j.newast.2017.06.013

T.L. Belyaeva, et al., Physical Review C, 80(6), 064617 (2009). https://doi.org/10.1103/PhysRevC.80.064617

V.S. Melezhik, et al., Physical Review C, 64(5), 054612 (2001). https://doi.org/10.1103/PhysRevC.64.054612

A. Banu, et al., Physical Review C, 84(1), 015803 (2011). https://doi.org/10.1103/PhysRevC.84.015803

K. Hencken, et al., Physical Review C, 54(6), 3043 (1996). https://doi.org/10.1103/PhysRevC.54.3043

V.S. Melezhik, et al., Physical Review C, 59(6), 3232 (1999). https://doi.org/10.1103/PhysRevC.59.3232

N. Fukuda, et al., Physical Review C, 70(5), 054606 (2004). https://doi.org/10.1103/PhysRevC.70.054606

S. Typel, et al., Physical Review C, 64(2), 024605 (2001). https://doi.org/10.1103/PhysRevC.64.024605

R. Chatterjee, et al., Nuclear Physics A, 675(3-4), 477 (2000). https://doi.org/10.1016/S0375-9474(00)00179-2

T. Gomi, et al., Journal of Physics G: Nuclear and Particle Physics, 31(10), S1517 (2005). https://doi.org/10.1088/0954-3899/31/10/023

A. Garcia-Camacho, et al., Nuclear Physics A, 776(3-4), 118 (2006). https://doi.org/10.1016/j.nuclphysa.2006.07.033

A. Garc´ıa-Camacho, et al., Physical Review C, 76(1), 014607 (2007). https://doi.org/10.1103/PhysRevC.76.014607

J. Margueron, et al., Nuclear Physics A, 703(1-2), 105 (2002). https://doi.org/10.1016/S0375-9474(01)01336-7

J. Margueron, et al., Nuclear Physics A, 720(3-4), 337 (2003). https://doi.org/10.1016/S0375-9474(03)01092-3

R. Kumar, and A. Bonaccorso, Physical Review C, 84(1), 014613 (2011). https://doi.org/10.1103/PhysRevC.84.014613

R. Kumar, and A. Bonaccorso, Physical Review C, 86(6), 061601 (2012). https://doi.org/10.1103/PhysRevC.86.061601

G. Baur, et al., Nuclear Physics A, 458(1), 188 (1986). https://doi.org/10.1016/0375-9474(86)90290-3

H. Rebel, in: Nuclear Astrophysics: Proceedings of a Workshop,FRG, (Springer, 1987), pp. 38-53.

F. Sch¨umann, et al., Physical Review C - Nuclear Physics, 73(1), 015806 (2006). https://doi.org/10.1103/PhysRevC.73.015806

Surender, and R. Kumar, Acta Physica Polonica B, 54(9), (2023). https://doi.org/10.5506/APhysPolB.54.9-A1

X.Y. Li, et al., Chinese Physics C, 44(7), 074001 (2020). https://doi.org/10.1088/1674-1137/44/7/074001

R.N. Panda, et al., Physics of Atomic Nuclei, 81(4), 417 (2018). https://doi.org/10.1134/S1063778818040154

F. De-Qing, et al., Chinese Physics Letters, 22(3), 572 (2005). https://doi.org/10.1088/0256-307X/22/3/015

D.Q. Fang, et al., Physical Review C, 76(3), 031601 (2007). https://doi.org/10.1103/PhysRevC.76.031601

Y.-L. Zhao, et al., Chinese physics letters, 20(1), 53 (2003). https://doi.org/10.1088/0256-307X/20/1/316

Surender, and R. Kumar, DAE Symp. Nucl. Phys. 66, 691 (2023). https://www.sympnp.org/proceedings/66/B174.pdf

C.A. Bertulani, and A. Gade, Computer Physics Communications, 175(5), 372 (2006). https://doi.org/10.1016/j.cpc.2006.04.006

Experimental Nuclear Reaction Data. National nuclear data center. Brookhaven National Laboratory (http://www. nndc. bnl.gov/exfor/exfor00.htm) and International Atomic Energy Agency, Nuclear Data Services, (http://www-nds.iaea.org/exfor/exfor.htm), 2000.

W. Horiuchi, et al., Physical Review C, 81(2), 024606 (2010). https://doi.org/10.1103/PhysRevC.81.024606

X.Y. Zhao, et al., Physical Review C, 100(4), 044609 (2019). https://doi.org/10.1103/PhysRevC.100.044609

Published
2024-12-08
Cited
How to Cite
Surender, & Kumar, R. (2024). Study of the Coulomb Nuclear Interference of 23Al Breakup Reaction with Different Targets. East European Journal of Physics, (4), 200-207. https://doi.org/10.26565/2312-4334-2024-4-19