Scale Modeling of the Influence of Multiple Localized Defects of Metal Surface on Optical Ellipsometry Results

  • Oleksii Haluza National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine; Kharkiv National University of Radio Electronics, Kharkiv, Ukraine https://orcid.org/0000-0003-3809-149X
  • Ivan Kolenov National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine; Kharkiv National University of Radio Electronics, 14 Nauky Ave., Kharkiv, 61166, Ukraine cInstitute of Electrophysics and Radiation Technologies of NAS of Ukraine, P.B. 8812, 28 Chernyshevsky St., Kharkiv, 61002, Ukraine dO.Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-1741-5195
  • Iryna Gruzdo Kharkiv National University of Radio Electronics, Kharkiv, Ukraine https://orcid.org/0000-0002-4399-2367
Keywords: Ellipsometry, Terahertz waves, Scale modeling, Surface defects, Localized defects

Abstract

The work is devoted to the problem of ellipsometric studies of real surfaces and considers the case when surface inhomogeneities are individual localized defects or conglomerates with a size comparable to the wavelength of the probing radiation. Such inhomogeneities lead to angular dependences of ellipsometric parameters that have a non-classical form and cannot be described using conventional well-known models of homogeneous planar layers. This work focuses on the influence of conglomerates of localized defects on the angular dependences of ellipsometric parameters and serves as a continuation of earlier studies in which single localized defects were considered. The dependence of the degree of influence of the distance between defects on the ellipsometric parameters is examined. The parameter “critical distance” between defects is introduced, beyond which they can be considered as localized, and estimates of this parameter for the considered configurations are provided.

Downloads

Download data is not yet available.

References

R.M.A. Azzam, and N.M. Bashara, Ellipsometry and polarized light (North Holland, Amsterdam, 1999).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).

H.G. Tompkins, and W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley, Chichester, 1999).

S. Zollner, F. Abadizaman, C. Emminger, and N. Samarasingha, Adv. Opt. Technol., 11, 117 (2022), https://doi.org/10.1515/aot-2022-0016

B. Hajduk, H. Bednarski, and B. Trzebicka, J. Phys. Chem. B, 124(16), 3229 (2020). https://doi.org/10.1021/acs.jpcb.9b11863

S. Bairagi, C.-L. Hsiao, R. Magnusson, J. Birch, J.P. Chu, F.-G. Tarntair, R.-H. Horng, K. Järrendahl, Opt. Mater. Express, 12, 3284 (2022), https://doi.org/10.1364/OME.462668

M.S. Gangwar, P. Agarwal, Phys. Scr. 98, 105944 (2023). https://doi.org/10.1088/1402-4896/acf796

W. Leigh, S. Mandal, J.A. Cuenca, D. Wallis, A.M. Hinz, R.A. Oliver, E.L.H. Thomas, and O. Williams, ACS Omega, 8, 30442 (2023). https://doi.org/10.1021/acsomega.3c03609

K. Ungeheuer, K.W. Marszalek, M. Mitura-Nowak, et al., Sci Rep. 13, 22116 (2023). https://doi.org/10.1038/s41598-023-49133-x

A. Lemire, K. Grossklaus, T.E. Vandervelde, IEEE Dataport, (2024). https://dx.doi.org/10.21227/xhrd-ny57

D. Schmidt, E. Schubert, and M. Schubert, in: Ellipsometry at the Nanoscale, edited by M. Losurdo and K. Hingerl (Springer Berlin Heidelberg, 2013), pp. 341-410.

S. Bian, and O. Arteaga, Opt. Express, 31(12), 19632-19645 (2023). https://doi.org/10.1364/oe.490197

W. Yu, C. Cui, H. Li, S. Bian, and X. Chen, Photonics 9(9), 621 (2022), https://doi.org/10.3390/photonics9090621

N.C. Bruce, O.G. Rodríguez-Herrera, C.N. Ramírez, and M. Rosete-Aguilar, Appl. Opt. 60(5), 1182 (2021). https://doi.org/10.1364/AO.410003

T. V. Vorburger, and K. C. Ludema, Appl. Opt. 19(4), 561 (1980). https://doi.org/10.1364/AO.19.000561

M.G. Tchéré, S. Robert, J. Dutems, H. Bruhier, B. Bayard, Y. Jourlin, and D. Jamon, Appl. Opt. 63(14), 3876 (2024). https://doi.org/10.1364/AO.520109

G.G. Politano, and C. Versace, Spectrosc. J. 1(3), 163 (2023). https://doi.org/10.3390/spectroscj1030014

A.I. Belyaeva, A.A. Galuza, P.A. Khaimovich, et al., Phys. Metals Metallogr. 117, 1170 (2016). https://doi.org/10.1134/S0031918X16090027

A.I. Belyaeva, V.Kh. Alimov, A.A. Galuza, K. Isobe, V.G. Konovalov, I.V. Ryzhkov, A.A. Savchenko, et al., J. Nucl. Mater. 413(1), 5 (2011), https://doi.org/10.1016/j.jnucmat.2011.03.026

A.I. Belyaeva, A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.A. Savchenko, Ye.M. Kuleshov, and S.Yu. Serebriansky, Telecommunications and Radio Engineering 74(2), 171 (2015). https://doi.org/10.1615/TelecomRadEng.v74.i2.60

N.L. Dmitruk, A.V. Goncharenko, and E.F. Venger, Optics of Small Particles and Composite Media, (Naukova Dumka, Kyiv, 2009).

O.V. Angelsky, and P.P. Maksimyak, Optical Engineering, 34(4), 973 (1995). https://doi.org/10.1117/12.197181

X. Liu, Q. Chen, J. Zeng, Y.J. Cai, and C.H. Liang, Opto-Electron Sci. 2, 220024 (2023). https://doi.org/10.29026/oes.2023.220024

M. W. Hyde, J. Opt. Soc. Am. A, 39(12), 2383 (2022). https://doi.org/10.1364/JOSAA.465457

S. Mizrakhy, in: IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON, Kyiv, Ukraine, 2017), pp. 198-201, https://doi.org/10.1109/UKRCON.2017.8100473

I.A. Tishchenko, and A.I. Nosich, IEEE Microw. Mag. 4(4), 32 (2003), https://doi.org/10.1109/MMW.2003.1266065

A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.I. Belyaeva, and Y.M. Kuleshov, IEEE Trans. THz Sci. Technol. 6(2), 183 (2016), https://doi.org/10.1109/TTHZ.2016.2525732

Published
2024-12-08
Cited
How to Cite
Haluza, O., Kolenov, I., & Gruzdo, I. (2024). Scale Modeling of the Influence of Multiple Localized Defects of Metal Surface on Optical Ellipsometry Results . East European Journal of Physics, (4), 334-340. https://doi.org/10.26565/2312-4334-2024-4-38

Most read articles by the same author(s)