First-Principles Study: The Optoelectronic Properties of the Wurtzite Alloy InGaN Based Solar Cells, within Modified Becke-Johnson (mBJ) Exchange Potential

  • Amina Benzina Faculty of Sciences and Technology (FST), University of Ain Temouchent, Algeria; Applied Materials Laboratory (AML), Research Center, Djillali Liabes, University of Sidi Bel Abbes, 22000, Algeria https://orcid.org/0000-0002-9375-3006
  • Abdel-Djawad Zebentout Faculty of Sciences and Technology (FST), University of Ain Temouchent, Algeria bApplied Materials Laboratory (AML), Research Center, Djillali Liabes, University of Sidi Bel Abbes, Algeria https://orcid.org/0000-0002-9503-7716
  • Lakhdar Benahmedi Technology and Solids Properties Laboratory, University of Mostaganem Abdelhamid ibn Badis (UMAB), Algeria https://orcid.org/0009-0008-0895-6820
  • Taieb Seddik Laboratory of Quantum Physics of Matter and Mathematical Modeling (LPQ3M), Faculty of Sciences and Technology, Mustapha Stambouli University of Mascara, Algeria. https://orcid.org/0000-0002-5777-1338
  • Abdelhadi Lachabi Applied Materials Laboratory (AML), Research Center, Djillali Liabes, University of Sidi Bel Abbes, Algeria
  • Hamza Abid Applied Materials Laboratory (AML), Research Center, Djillali Liabes, University of Sidi Bel Abbes, Algeria https://orcid.org/0000-0001-9647-7425
Keywords: Full Potential-Linearized Augmented Plane Wave (FP-LAPW), InxGa1-xN, Tran and Blaha modified Becke-Johnson potential (TB-mBJ), Wurtzite, Solar cells

Abstract

Numerical simulation based on Full Potential-Linerazed Augmented Plane Wave calculations (FP-LAPW) is implemented in WIEN2K code to study the fundamental structural and optoelectronic properties of the Wurtzite ternary alloy structure InxGa1-xN (x = 0.125, 0.375, 0.625 and 0.875) matched on GaN substrate using a 16-atom supercell. The generalized gradient approximation of Wu and Cohen, the standard local density approach, and the Tran-Blaha modified Becke–Johnson potential were applied to improve the band structure and optical properties of the concerning compounds. Whenever conceivable, we compare the obtained results by experiments and computations performed with diverse computational schemes. In those alloys, the essential points in the optical spectra display the passage of electrons from the valance band to the unoccupied states in the conduction band. The results lead that Becke–Johnson potential will be a promising potential for the bandgaps engineering of III-V compounds which supplied that those materials had crucial absorption coefficients that lead to the application for optoelectronics components, especially solar cells.

Downloads

Download data is not yet available.

References

Liu, F., Wang, T., Gao, X., Yang, H., Zhang, Z., Guo, Y., ... & Wang, X. “Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene,” Science Advances, 9(31), eadf8484 (2023). https://doi.org/10.1016/j.commatsci.2024.113264

G. Rehman, et al., “Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies,” J. Electron. Mater. 45, 3314 (2016). https://doi.org/10.1007/s11664-016-4492-7

Benbedra, A., Meskine, S., Boukortt, A., & Abbassa, H. “Polarization Properties of Wurtzite III-Nitride Alloys Using the Hexagonal Reference Structure,” ECS Journal of Solid-State Science and Technology, 12(10), 103008 (2023). https://doi.org/10.1149/2162-8777/acfe9a

B.-T. Liou, S.-H. Yen, and Y.-K. Kuo, “Vegard’s law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys,” in: Semiconductor Lasers and Applications II, vol. 5628, edited by J.Q. Yao, Y.J. Chen, and S. Lee, (International Society for Optics and Photonics, SPIE, 2005), pp. 296–305, https://doi.org/10.1117/12.575300

C.J. Praharaj, Group III-Nitride Semiconductor Optoelectronics, (John Wiley & Sons, 2023).

M. Aslan, et al., “Structural and electronic properties of InNxP1−x alloy in full range (0 ≤ x ≤ 1),” Philosophical Magazine, 96, 991 (2016). https://doi.org/10.1080/14786435.2016.1149248

Chouchen, B., Ducroquet, F., Nasr, S., Alzahrani, A. Y., Hajjiah, A. T., & Gazzah, M. H. InxGa1-xN/GaN double heterojunction solar cell optimization for high temperature operation. Solar Energy Materials and Solar Cells, 234, 111446 (2022). https://doi.org/10.1016/j.solmat.2021.111446

Giorgi, G., Amato, M., Ossicini, S., Cartoixa, X., Canadell, E., & Rurali, R. “Doping of III–V arsenide and phosphide wurtzite semiconductors,” The Journal of Physical Chemistry C, 124(49), 27203-27212 (2020). https://dx.doi.org/10.1021/acs.jpcc.0c09391

Imran, A., Sulaman, M., Yousaf, M., Anwar, M. A., Qasim, M., Dastgeer, G., ... & Wang, X. “Growth of High Mobility InN Film on Ga‐Polar GaN Substrate by Molecular Beam Epitaxy for Optoelectronic Device Applications,” Advanced Materials Interfaces, 10(20), 2200105 (2023). https://doi.org/10.1002/admi.202200105

Reilly, C. E., Keller, S., Nakamura, S., & DenBaars, S. P. “InN quantum dots by metalorganic chemical vapor deposition for optoelectronic applications,” Frontiers in Materials, 8, 647936 (2021). https://doi.org/10.3389/fmats.2021.647936

H. Abboudi, H. EL Ghazi, R. En-nadir, M.A. Basyooni-M. Kabatas, A. Jorio, I. Zorkani, “Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness,” Nanomaterials, 14, 104 (2024). https://doi.org/10.3390/nano14010104

R. Belghouthi, A. Rached, M. Aillerie, et al., “N-Face Semi-Bulk Absorber Boosts Conversion Efficiency of InGaN Solar Cell,” J. Electron. Mater. 52, 7566–7575 (2023). https://doi.org/10.1007/s11664-023-10662-w

A. Bouadi, H. Naim, A. Djelloul, Y. Benkrima, R. Fares, “Enhancing the efficiency of the gallium indium nitride (InGaN) solar cell by optimizing the effective parameters,” Chalcogenide Letters, 19(9), 611-619 (2022). https://doi.org/10.15251/CL.2022.199.611

Benahmedi, L., Besbes, A., & Djelti, R. “Structural, magnetic, elastic, and thermoelectric properties of Ba2InOsO6 double perovskite in the cubic phase: A DFT+ U study with spin-orbit-coupling,” Journal of Magnetism and Magnetic Materials, 611, 172629. (2024). https://doi.org/10.1016/j.jmmm.2024.172629

Lakhdar, B., Anissa, B., Radouan, D., Al Bouzieh, N., & Amrane, N. “Structural, electronic, elastic, optical and thermoelectric properties of ASiCl3 (A= Li, Rb and Cs) chloroperovskites: a DFT study,” Optical and Quantum Electronics, 56(3), 313 (2024). https://doi.org/10.1007/s11082-023-06045-4

L.C. de Carvalho, et al., “Ab initio calculation of optical properties with excitonic effects in wurtzite InxGa1−xN and InxAl1−xN alloys,” Physical Review B, 87, 195211 (2013). https://doi.org/10.1103/PhysRevB. 87.195211

S. A. Hashemizadeh, and S. V. Mohammadi, “First-Principles Investigation of Density of States and Electron Density in Wurtzite In0.5Ga0.5N Alloys with GGA-PBEsol Method,” Journal of Nanostructures, 6, 273 (2016) https://doi.org/10.22052/jns.2016.40758

W.-W. Lin and Y.-K. Kuo, “Band structures and bandgap bowing parameters of wurtzite and zincblende III-nitrides,” in: Semiconductor Lasers and Applications, vol. 4913, edited by Y. Luo and Y. Nakano, (International Society for Optics and Photonics, SPIE, 2002), pp. 236-247. https://doi.org/10.1117/12.482239

N. N. Anua, et al., “DFT Investigations of the Optical Properties of Gallium Arsenide”, in: Advanced Materials Research, vol. 895, (Trans. Tech. Publications Ltd, 2014), pp. 429–438, https://doi.org/10.4028/www.scientific.net/AMR.895.429

K. Schwarz, and P. Blaha, “Solid state calculations using WIEN2k,” Computational Materials Science, 28, 259 (2003). https://doi.org/10.1016/S0927-0256(03)00112-5

B. Amin, and I. Ahmad, “Theoretical investigation of half metallicity in Fe/Co/Ni doped ZnSe material systems,” Journal of Applied Physics, 106, 093710 (2009). https://doi.org/10.1063/1.3256186

P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas, Physical Review, 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

W. Kohn, and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

M. Dadsetani, B. Kianisadr, and H. Nejatipour, “First Principles Investigation of the Optical Properties of BNxP1−x (0 ≤ x ≤ 1) Boron Ternary Alloys,” J. Electron. Mater. 44, 2699-2711 (2015). https://doi.org/10.1007/s11664-015-3691-y

B.-T. Liou, and C.-W. Liu, “Electronic and Structural Properties of zincblende AlxIn1−xN,” Optics Communications, 274, 361 (2007). https://doi.org/10.1016/j.optcom.2007.02.040

B. Amin, et al., “Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications,” Journal of Applied Physics, 109, 023109 (2011). https://doi.org/10.1063/1.3531996

A. Benzina, et al., “First-principles calculation of structural, optoelectronic properties of the cubic AlxGayIn1−x−yN quaternary alloys matching on AlN substrate, within modified Becke–Johnson (mBJ) exchange potential,” Optik, 127, 11577 (2016). https://doi.org/10.1016/j.ijleo.2016.09.014

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Physical Review B, 83, 195134 (2011). https://doi.org/10.1103/PhysRevB.83.195134

M. B. Asfia, and M. A. Rashid, “First-Principles Study of Half Metallic Ferromagnetic and Optical Properties of Nb Doped Cubic ZnS using TB-mBJ Approximation,” Dhaka University Journal of Science, 69, 194–201 (2022). https://doi.org/10.3329/dujs.v69i3.60030

S. Berri, “Theoretical analysis of the structural, electronic, optical and thermodynamic properties of trigonal and hexagonal Cs3Sb2I9 compound,” The European Physical Journal B, 93, 1-12 (2020). https://doi.org/10.1140/epjb/e2020-10143-1

V. Tyuterev, and N. Vast, “Murnaghan’s equation of state for the electronic ground state energy,” Computational Materials Science, 38, 350 (2006). https://doi.org/10.1016/j. commatsci.2005.08.012

R. Nunez-Gonzalez, et al., “First-principles calculation of the band gap of AlxGa1−xN and InxGa1−xN,” Revista Mexicana de fısica, 54, 111 (2008).

S. Stepanov, et al., “Influence of Poisson’s ratio uncertainty on calculations of the bowing parameter for strained InGaN layers,” MRS Internet Journal of Nitride Semiconductor Research, 6, e6 (2001). https://doi.org/10.1557/S1092578300000181

A. I. Duff, L. Lymperakis, and J. Neugebauer, “Understanding and controlling indium incorporation and surface segregation on InxGa1−xN surfaces: An ab initio approach,” Physical Review B, 89, 085307 (2014). https://doi.org/10.1103/PhysRevB.89.085307

P. Rinke, et al., “Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN,” Physical Review B, 77, 075202 (2008). https://doi.org/10.1103/PhysRevB.77.075202

A. Belabbes, et al., “Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states,” Physical Review B, 84, 125108 (2011). https://doi.org/10.1103/PhysRevB.84.125108

S.-H. Wei, et al., “Breakdown of the band-gap-common-cation rule: The origin of the small band gap of InN,” Physical Review B, 67, 165209 (2003). https://doi.org/10.1103/PhysRevB.67.165209

Tian, Z., Zhang, P., Sun, W., Yan, B., & Sun, Z. “Vegard’s law deviating Ti2 (SnxAl1− x) C solid solution with enhanced properties,” Journal of Advanced Ceramics, 12(8), 1655-1669 (2023). http://dx.doi.org/10.26599/JAC.2023.9220779

E. Sakalauskas, et al., “Dielectric function and bowing parameters of InGaN alloys,” Physica Status Solidi (b), 249, 485 (2012). https://doi.org/10.1002/pssb.201100334

Waack, J. M., Schäfer, N. A., Czerner, M., & Heiliger, C. “Structural, elastic, and electronic properties of cubic zinc-blende InxGa1−xN alloys,” Physical Review B, 110(19), 195201 (2024). https://doi.org/10.1103/PhysRevB.110.195201

M. O’Donnell, E.T. Jaynes, and J.G. Miller, “Kramers–Kronig relationship between ultrasonic attenuation and phase velocity,” The Journal of the Acoustical Society of America, 69, 696 (1981). https://doi.org/10.1121/1.385566

Z.-Y. Jiao, S.-H. Ma, and Y.-L. Guo, “Simulation of optical function for phosphide crystals following the DFT band structure calculations,” Computational and Theoretical Chemistry, 970, 79 (2011). https://doi.org/10.1016/j.comptc.2011.05.030

Resendiz-Hernandez, G., Leal-Perez, J. E., Herrera-Basurto, R., Mercader-Trejo, F. E., Auciello, O., & Hurtado-Macias, A. “Structural properties, bandgap, and complex dielectric function in Bi2Te3 thermoelectric by valence electron energy loss spectroscopy (VEELS) analysis,” Journal of Alloys and Compounds, 965, 171420 (2023). https://doi.org/10.1016/j.jallcom.2023.171420

R. Ali, et al., “The structural, electronic and optical response of IIA–VIA compounds through the modified Becke–Johnson potential,” Physica B: Condensed Matter, 410, 93 (2013). https://doi.org/10.1016/j.physb.2012.09.050

G. Murtaza, et al., “First principle study of cubic perovskites: AgTF3 (T=Mg, Zn),” Physica B: Condensed Matter, 406, 4584 (2011). https://doi.org/10.1016/j.physb.2011.09.026

A. Khettou, I. Zeydi, M. Chellali, M.B. Arbia, Mansouri, S., Helal, H., & Maaref, H. “Simulation and optimization of InGaN Schottky solar cells to enhance the interface quality,” Superlattices and Microstructures, 142, 106539 (2020). https://doi.org/10.1016/j.spmi.2020.106539

Published
2024-11-28
Cited
How to Cite
Benzina, A., Zebentout, A.-D., Benahmedi, L., Seddik, T., Lachabi, A., & Abid, H. (2024). First-Principles Study: The Optoelectronic Properties of the Wurtzite Alloy InGaN Based Solar Cells, within Modified Becke-Johnson (mBJ) Exchange Potential. East European Journal of Physics, (4), 491-502. https://doi.org/10.26565/2312-4334-2024-4-58