Barrow Holographic Dark Energy Model in Bianchi Type-III Universe with Quintessence
Abstract
In this paper, we study a spatially homogeneous and anisotropic Bianchi type-III universe containing cold dark matter and Barrow holographic dark energy within the framework of General Relativity. We assume the cold dark matter and Barrow holographic dark energy to be non-interacting and obtain exact solutions of the Einstein field equations by considering a hybrid expansion law and assuming that the expansion scalar is proportional to the shear scalar. We examine the physical and kinematical properties of the resulting model using parameters such as the Hubble parameter, the anisotropic parameter, the deceleration parameter, the equation of state parameter, the jerk parameter etc. We also examine whether the energy conditions are violated or validated. We find that the Null, Weak, and Dominant energy conditions are fulfilled, while the Strong Energy Condition is violated, which supports the accelerated expansion of the universe. The Statefinder diagnostics have been conducted based on recent cosmological observations. In addition, we
reformulated the correspondence between quintessence scalar field and Barrow holographic dark energy model.
Downloads
References
A.G. Riess, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, 116, 1009-1038 (1998). https://doi.org/10.1086/300499
S. Perlmutter, et al., ”Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517, 565-586 (1999). https://doi.org/10.1086/307221
D.N. Spergel, et al., ”Frist-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl. Ser. 148, 175–194 (2003). https://doi.org/10.1086/377226
U. Seljak, et al., ”Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy,” Phys. Rev. D, 71, 103515 (2005). https://doi.org/10.1103/PhysRevD.71.103515
C.L. Bennett, et al., ”First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. Ser. 148, 1-27 (2003). https://doi.org/10.1086/345346
M. Tegmark, et al., ”Cosmological parameters from SDSS and WMAP,” Phys. Rev. D, 69, 103501, (2004). https://doi.org/10.1103/PhysRevD.69.103501
D.J. Eisenstein, et al., ”Detection of the Baryon Acoustic Peak in the Large-Scale correlation function of SDSS luminous red galaxies,” The Astronomical Journal, 633, 560-574 (2005). https://doi.org/10.1086/466512
C.R. Contaldi, C.R. Contaldi, H. Hoekstra, and A. Lewis, ”Joint Cosmic Microwave Background and Weak Lensing Analysis: Constraints on Cosmological Parameters,” Phys. Rev. Lett. 90, 221303 (2003). https://doi.org/10.1103/PhysRevLett.90.221303
S.W. Allen, R.W. Schmidt, H. Ebeling, A.C. Fabian, and L. Van Speybroeck, ”Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters,” Mon. Not. R. Astron. Soc. 353, 457–467 (2004). https://doi.org/10.1111/j.1365-2966.2004.08080.x
V. Sahni, and A. Starobinsky, ”The Case for a Positive Cosmological Λ-term,” Int. J. Mod. Phys. D, 9, 373 (2000). https://doi.org/10.1142/S0218271800000542
S. Weinberg, ”The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1
M. Sami, and T. Padmanabhan, ”Viable cosmology with a scalar field coupled to the trace of the stress-tensor,” Phys. Rev. D, 67, 083509 (2003). https://doi.org/10.1103/PhysRevD.67.083509
T. Chiba, ”Tracking K-essence,” Phys. Rev. D, 66, 063514 (2002). https://doi.org/10.1103/PhysRevD.66.063514
A. Kamenshchik, U. Moschella, and V. Pasquier, ”An alternative to quintessence,” Phys. Lett. B, 511, 265-268 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8
T. Padmanabhan, ”Accelerated expansion of the universe driven by tachyonic matter,” Phys. Rev. D, 66, 021301 (2002). https://doi.org/10.1103/PhysRevD.66.021301
G. ’t Hooft, ”Dimensional reduction in quantum gravity, preprint (2009),” https://doi.org/10.48550/arXiv.gr-qc/9310026
W. Fischler, and L. Susskind, ”Holography and cosmology,” https://doi.org/10.48550/arXiv.hep-th/9806039
M. Li, ”A model of holographic dark energy,” Phys. Lett. B, 603, 1-5 (2004). https://doi.org/10.1016/j.physletb.2004.10.014
C. Tsallis, and L.J.L. Cirto, ”Black hole thermodynamical entropy,” Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6
L.N. Granda, and A. Oliveros, ”Infrared cut-off proposal for the holographic density,” Phys. Lett. B, 669(5), 275-277 (2008). https://doi.org/10.1016/j.physletb.2008.10.017
H. Moradpour, et al.: ”Thermodynamic approach to holographic dark energy and the R´enyi entropy,” Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8
J.D. Barrow, ”The area of a rough black hole,” Phys. Lett. B, 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643
S. Wang, Y. Wang, and M. Li, ”Holographic dark energy,” Phys. Rep., 696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003
E.N. Saridakis, ”Barrow holographic dark energy,” Phys. Rev. D, 102, 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525
S. Srivastava, and U.K. Sharma, ”Barrow holographic dark energy with Hubble horizon as IR cutoff,” Int. J. Geo. Methods in Mod. Phys. 18, 2150014 (2021). https://doi.org/10.1142/S0219887821500146
B.C. Paul, et al., ”Bianchi-I anisotropic universe with Barrow holographic dark energy,” Eur. Phys. J. C, 82, 76 (2022). https://doi.org/10.1140/epjc/s10052-022-10041-5
Y. Hu, M. Li, N. Li, and Z. Zhang, ”Holographic dark energy with cosmological constant,” JCAP, 1508, 012 (2015). https://doi.org/10.1088/1475-7516/2015/08/012
¨ O. Akarsu, et al., ”Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints,” JCAP01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022
T. Biswas, and A. Mazumdar, ”Inflation with a negative cosmological constant,” Phys. Rev. D, 80, 023519 (2009). https://doi.org/10.1103/PhysRevD.80.023519
A.A. Sen, S.A. Adil, and S. Sen, ”Do cosmological observations allow a negative Λ?,” Mon. Not. of the Royal Astro. Society, 518, 1 (2023). https://doi.org/10.1093/mnras/stac2796
S.W. Hawking, and G.F.R. Ellis, The large scale structure of space-time, (Cambridge, England, 1973)
R. Schoen, and S.T. Yau, ”Positivity of the Total Mass of a General Space-Time,” Phys. Rev. Lett. 43, 1457 (1979). https://doi.org/10.1103/PhysRevLett.43.1457
V. Sahni, T.D. Saini, A.A. Starobinsky, and U. Alam, ”Statefinder—a new geometrical diagnostic of dark energy,” JETP Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831
Copyright (c) 2024 Chandra Rekha Mahanta, Dibyajyoti Das
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).