Nonclassicalities of the Superposition State of Coherent and Photon-Added-Coherent State

Keywords: Coherent state, Photon-added coherent state, Hybrid coherent state, Wigner-Yanase skew information, Mandel Q factor, Quadrature squeezing, Nonclassical effect

Abstract

The nonclassical properties of the hybrid coherent state (HCS), which is the superposition state of the coherent state and photon-added coherent (PAC) state, is investigated analytically. We evaluated the photon number statistics, the Wigner-Yanase skew information, the Mandel Q factor and the quadrature squeezing of the HCS to quantify its nonclassicality. This superposition state exhibits more nonclassical properties than the PAC state and even the superposition state of coherent state and single-photon-added coherent (SPAC) state. We reported that the addition of more photons to the PAC state part of the HCS generally quantifies more nonclassicalities. The nonclassical properties of the HCS also depend on the amplitudes of coherent state and the PAC state in the HCS.

Downloads

Download data is not yet available.

References

G.S. Agarwal, and K. Tara, Phys. Rev. A, 43, 492 (1991). https://doi.org/10.1103/PhysRevA.43.492

A. Zavatta, S. Viciani, and M. Bellini, Science, 306, 660 (2004). https://www.science.org/doi/10.1126/science.1103190

E. P. Mattos, and A. Vidiella-Barranco, Phys. Rev. A, 104, 033715 (2021). https://doi.org/10.1103/PhysRevA.104.033715

E. P. Mattos, and A. Vidiella-Barranco, J. Opt. Soc. Am. B, 39, 1885 (2022). https://doi.org/10.1364/JOSAB.450622

Q. Hu, T. Yusufu, and Y. Turek, Phys. Rev. A, 105, 022608 (2022). https://doi.org/10.1103/PhysRevA.105.022608

S. K. Giri, B. Sen, C. H. Raymond Ooi, and A. Pathak, Phys. Rev. A, 89, 033628 (2014). https://doi.org/10.1103/PhysRevA.89.033628

S. K. Giri, B. Sen, A. Pathak, and P. C. Jana, Phys. Rev. A, 93, 012340(2016). https://doi.org/10.1103/PhysRevA.93.012340

S. K. Giri, K. Thapliyal, B. Sen, and A. Pathak, Physica A, 466, 140 (2017). https://doi.org/10.1016/j.physa.2016.09.004

P. V. P. Pinheiro, and R. V. Ramos, Quant. Infor. Proc. 12, 537 (2013). https://doi.org/10.1007/s11128-012-0400-0

D. Wang, M. Li, F. Zhu, Z-Q. Yin, W. Chen, Z-F. Han, G-C. Guo, and Q. Wang, Phys. Rev. A, 90, 062315 (2014). https://doi.org/10.1103/PhysRevA.90.062315

Q. Dai, and H. Jing, Inter. J. Theor. Phys. 47, 2716 (2008), https://doi.org/10.1007/s10773-008-9710-5

D. Braun, P. Jian, O. Pinel, and N. Treps, Phys. Rev. A, 90, 013821 (2014). https://doi.org/10.1103/PhysRevA.90.013821

S. A. Podoshvedov, Phys. Rev. A. 79, 012319 (2009), https://doi.org/10.1103/PhysRevA.79.012319

J-J. Chen, C-H. Zhang, J-M. Chen, C-M. Zhang, and Q. Wang, Quant. Infor. Proc. 19, 198 (2020). https://doi.org/10.1007/s11128-020-02695-5

S. U. Shringarpure, and J. D. Franson, Phys. Rev. A, 100, 043802 (2019). https://doi.org/10.1103/PhysRevA.100.043802

J. T. Francis, and M. S. Tame, Phys. Rev. A, 102, 043709 (2020). https://doi.org/10.1103/PhysRevA.102.043709

Y. Turek, N. Aishan, and A. Islam, Phys. Scr. 98, 075103 (2023). https://iopscience.iop.org/article/10.1088/1402-4896/acdcca

C. C. Gerry, and P. L. Knight, Introductory Quantum Optics, (Cambridge, New York, 2005), pp. 150-165.

L. Mandel, Opt. Lett. 4, 205 (1979). https://doi.org/10.1364/OL.4.000205

S. Luo, and Y. Zhang, Phys. Rev. A, 100, 032116 (2019). https://doi.org/10.1103/PhysRevA.100.032116

S. Luo, Phys. Rev. Lett. 91, 180403 (2003), https://doi.org/10.1103/PhysRevLett.91.180403

S. Luo, and Y. Sun, Phys. Rev. A, 98, 012113 (2018). https://doi.org/10.1103/PhysRevA.98.012113

S. Luo, and Y. Sun, Phys. Rev. A, 96, 022130 (2017). https://doi.org/10.1103/PhysRevA.96.022130

Published
2024-03-05
Cited
How to Cite
Giri, S. K. (2024). Nonclassicalities of the Superposition State of Coherent and Photon-Added-Coherent State. East European Journal of Physics, (1), 151-155. https://doi.org/10.26565/2312-4334-2024-1-12