Study of Structural and Electronic Properties of CsMgCl3 Compound
Abstract
In this report, we have investigated the CsMgCl3 compound with the help of the WIEN2K software package. The structural and electronic properties are performed using the full potential augmented plane wave (FP-LAPW) method with the generalised gradient approximation (GGA) approximation as exchange correlation potentials. We used the Birch-Murnaghan equation (BME) to find the structural properties of the material. These include the lattice parameter, the bulk modulus, the first derivative of the bulk modulus, the minimum energy, and the volume. The structural properties match up with the experimental data. Electronic properties in terms of the band structure (BS) and total and partial density of state (T-DOS and P-DOS) profiles of CsMgCl3 using GGA potentials exhibit an indirect wide energy band gap of 5.35 eV. All these properties show that the CsMgCl3 compound is used as a perovskite in solar cells.
Downloads
References
J.N. Burschka, S.J. Pellet, R. Moon, P. Humpry-Baker, M.K.N. Gao, and M. Gratzel, Nature, 499, 316-319 (2013). https://doi.org/10.1038/nature12340
M. He, D. Zheng, M. Wang, C. Lin, and Z. Lin, J. Mater. Chem. A, 2, 5994-6003 (2014). https://doi.org/10.1039/C3TA14160H
M. Grätzel, Nat. Mater. 13, 838-842 (2014). https://doi.org/10.1038/nmat4065
Q.F. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science, 347, 967-970 (2015). https://doi.org/10.1126/science.aaa5760
W. Lee, H. Li, A.B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, et al., Proc. Natl. Acad. Sci. USA, 114, 8693 (2017). https://doi.org/10.1073/pnas.1711744114
R.E. Brandt, V. Stevanović, D.S. Ginley, and T. Buonassisi, MRS Commun. 5, 265 (2015). https://doi.org/10.1557/mrc.2015.26
M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, et al., Energy Environ. Sci. 9, 1989-1997 (2016). https://doi.org/10.1039/C5EE03874J
W. Zhang, G.E. Eperon, and H.J. Snaith, Nat. Energy, 1, 16048 (2016). https://doi.org/10.1038/nenergy.2016.48
D.H. Fabini, J.G. Labram, A.J. Lehner, J.S. Bechtel, H.A. Evans, A.V. Ven, F. Wudl, et al., Inorg. Chem. 56, 11-25 (2017). https://doi.org/10.1021/acs.inorgchem.6b01539
D. Ray, C. Clark, H.Q. Pham, J. Borycz, R.J. Holmes, E.S. Aydil, and L. Gagliardi, J. Phys. Chem. C, 122, 7838-7848 (2018). https://doi.org/10.1021/acs.jpcc.8b00226
Y.P. He, and G. Galli, Chem. Mater. 26, 5394-5400 (2014). https://doi.org/10.1021/cm5026766
M.A. Ali, N. Alam, S. Meena, S.A. Ali, A. Dar, G. Khan, Murtaza, et al., Int. J. Quantum. Chem. 120, e26141 (2019). https://doi.org/10.1002/qua.26141
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, et al., Science, 347, 519-522 (2015). https://doi.org/10.1126/science.aaa2725
X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Nafradi, M. Spina, et al., J. Phys. Chem. C, 119, 11506-11510 (2015). https://doi.org/10.1021/acs.jpcc.5b03939
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science, 342, 344-347 (2013). https://doi.org/10.1126/science.1243167
C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Inorg. Chem. 52, 9019-9038 (2013). https://doi.org/10.1021/ic401215x
A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Nat. Mater. 15, 247-251 (2016). https://doi.org/10.1038/nmat4572
S.A. Chowdhury, K. Inzani, T. Pena, A. Dey, S.M. Wu, S.M. Griffin, and H. Askari, J. of Engg. Mat. & Techno. 144, 011006 (2021). http://dx.doi.org/10.1115/1.4051306
T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, et al., J. Mater. Chem. A, 3, 23829-23832 (2015). https://doi.org/10.1039/C5TA05741H
L.C. Tang, C.S. Chang, L.C. Tang, and J.Y. Huang, J. Phys. Condens. Matter, 12, 9129-9143 (2017). https://doi.org/10.1088/0953-8984/12/43/303
F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 11445-11452 (2015). https://doi.org/10.1021/jacs.5b06658
S. Shao, J. Liu, G. Portale, H. Fang, G.R. Blake, G.H. TenBrink, L.J.A. Koster, et al., Ad Energy Mat. 1702019 (2017). https://doi.org/10.1002/aenm.201702019
Y. Takahashi, H. Hasegawa, Y. Takahashi, and T. Inabe, J. Solid State Chem. 205, 39. (2013). https://doi.org/10.1016/j.jssc.2013.07.008
W. Ming, H. Shi, and M.H. Du, J. Mater. Chem. A, 4, 13852-13858 (2016). https://doi.org/10.1039/C6TA04685A
L.Y. Huang, and W.R.L. Lambrecht, Phys. Rev. B, 88, 165203 (2013). https://doi.org/10.1103/PhysRevB.88.165203
D.J. Singh, J. Appl. Phys. 112, 083509 (2012). https://doi.org/10.1063/1.4759240
I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, et al., J. Am. Chem. Soc. 134, 8579-8587 (2012). https://doi.org/10.1021/ja301539s
C. Kaewmeechai, Y. Laosiritaworn, and A.P. Jaroenjittichai, J. Phys.: Conf. Ser. 1380, 012112 (2019). https://doi.org/10.1088/1742-6596/1380/1/012112
G.L. McPherson, A.M. McPherson, and J.L. Atwood, J. Phys. Chem. Solids, 41, 495 (1980). https://doi.org/10.1016/0022-3697(80)90180-8
A.P. Shpak, O.A. Glike, A.G. Dmitriev, P.A. Rodnyi, A.S. Voloshinovskii, and S.M. Pidzyrailo, J. Electron. Spectrosc. Relat. Phenom. 68, 335-338 (1994). https://doi.org/10.1016/0368-2048(94)02131-7
G.L. McPherson, T.J. Kistenmacher, and G.D. Stucky, J. Chem. Phys. 52, 815-824 (1970). https://doi.org/10.1063/1.1673061
P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comp. Phys. Commun. 59, 399-415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, wien2k, An Augment. Pl. Wave+ Local Orbitals Progr. Calc. Cryst, Prop, 2001.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
F.D. Muranghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1994).
G. Shwetha, V. Kanchanaa, and G. Vaitheeswaran, J. of Solid State of Chem. 227, 110–116 (2015). https://doi.org/10.1016/j.jssc.2015.03.024
A. Kumar, A. Kumar, K. Kumar, R.P. Singh, R. Singh, and R. Kumar, East European Journal of Physics, (1), 109-117 (2023). https://doi.org/10.26565/2312-4334-2023-1-13
A. Kumar, R. Gautam, R.P. Singh, and A. Kumar, International Journal of Advanced Science and Technology, 29(08), 1150 1158 (2020).
A. Kumar, R. Guatam, S. Chand, A. Kumar, and R.P. Singh, Materials Physics & Mechanics, 42(1), 112-130 (2019). http://dx.doi.org/10.18720/MPM.4212019_10
Copyright (c) 2024 Aman Kumar, Harshit Gupta, Dev Kumar, Ritu Sharma, Anuj Kumar, Subodh Kumar Sharma, Aman Pal Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).