Study of Structural and Electronic Properties of CsMgCl3 Compound

  • Aman Kumar Department of Physics, Keral Verma Subharti College Of Science, Swami Vivekanad Subharti University Meerut, India https://orcid.org/0000-0002-8867-6595
  • Harshit Gupta Department of Electrical Engineering, Swami Vivekanand Subharti University Meerut, India https://orcid.org/0009-0007-3964-6895
  • Dev Kumar Department of Physics, C.C.S University Meerut, India https://orcid.org/0009-0006-2726-4227
  • Ritu Sharma Department of Electronic and Communication Engineering, Subharti Polytechnic College, Swami Vivekanand Subharti University Meerut
  • Anuj Kumar Mahamaya Goverment Degree college, Shearkot Bijnore, UP, India https://orcid.org/0000-0003-3372-3718
  • Subodh Kumar Sharma Department of Physics, S. S. V. College, Hapur (C. C. S. University, Meerut U. P.), India
  • Aman Pal Singh Department of Physics, M.M. College, Modinagar (C. C. S. University, Meerut U. P.), India
Keywords: GGA, Optoelectronic, Power generator, Band gap

Abstract

In this report, we have investigated the CsMgCl3 compound with the help of the WIEN2K software package. The structural and electronic properties are performed using the full potential augmented plane wave (FP-LAPW) method with the generalised gradient approximation (GGA) approximation as exchange correlation potentials. We used the Birch-Murnaghan equation (BME) to find the structural properties of the material. These include the lattice parameter, the bulk modulus, the first derivative of the bulk modulus, the minimum energy, and the volume. The structural properties match up with the experimental data. Electronic properties in terms of the band structure (BS) and total and partial density of state (T-DOS and P-DOS) profiles of CsMgCl3 using GGA potentials exhibit an indirect wide energy band gap of 5.35 eV. All these properties show that the CsMgCl3 compound is used as a perovskite in solar cells.

Downloads

Download data is not yet available.

References

J.N. Burschka, S.J. Pellet, R. Moon, P. Humpry-Baker, M.K.N. Gao, and M. Gratzel, Nature, 499, 316-319 (2013). https://doi.org/10.1038/nature12340

M. He, D. Zheng, M. Wang, C. Lin, and Z. Lin, J. Mater. Chem. A, 2, 5994-6003 (2014). https://doi.org/10.1039/C3TA14160H

M. Grätzel, Nat. Mater. 13, 838-842 (2014). https://doi.org/10.1038/nmat4065

Q.F. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science, 347, 967-970 (2015). https://doi.org/10.1126/science.aaa5760

W. Lee, H. Li, A.B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, et al., Proc. Natl. Acad. Sci. USA, 114, 8693 (2017). https://doi.org/10.1073/pnas.1711744114

R.E. Brandt, V. Stevanović, D.S. Ginley, and T. Buonassisi, MRS Commun. 5, 265 (2015). https://doi.org/10.1557/mrc.2015.26

M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, et al., Energy Environ. Sci. 9, 1989-1997 (2016). https://doi.org/10.1039/C5EE03874J

W. Zhang, G.E. Eperon, and H.J. Snaith, Nat. Energy, 1, 16048 (2016). https://doi.org/10.1038/nenergy.2016.48

D.H. Fabini, J.G. Labram, A.J. Lehner, J.S. Bechtel, H.A. Evans, A.V. Ven, F. Wudl, et al., Inorg. Chem. 56, 11-25 (2017). https://doi.org/10.1021/acs.inorgchem.6b01539

D. Ray, C. Clark, H.Q. Pham, J. Borycz, R.J. Holmes, E.S. Aydil, and L. Gagliardi, J. Phys. Chem. C, 122, 7838-7848 (2018). https://doi.org/10.1021/acs.jpcc.8b00226

Y.P. He, and G. Galli, Chem. Mater. 26, 5394-5400 (2014). https://doi.org/10.1021/cm5026766

M.A. Ali, N. Alam, S. Meena, S.A. Ali, A. Dar, G. Khan, Murtaza, et al., Int. J. Quantum. Chem. 120, e26141 (2019). https://doi.org/10.1002/qua.26141

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, et al., Science, 347, 519-522 (2015). https://doi.org/10.1126/science.aaa2725

X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Nafradi, M. Spina, et al., J. Phys. Chem. C, 119, 11506-11510 (2015). https://doi.org/10.1021/acs.jpcc.5b03939

G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, and T.C. Sum, Science, 342, 344-347 (2013). https://doi.org/10.1126/science.1243167

C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Inorg. Chem. 52, 9019-9038 (2013). https://doi.org/10.1021/ic401215x

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, Nat. Mater. 15, 247-251 (2016). https://doi.org/10.1038/nmat4572

S.A. Chowdhury, K. Inzani, T. Pena, A. Dey, S.M. Wu, S.M. Griffin, and H. Askari, J. of Engg. Mat. & Techno. 144, 011006 (2021). http://dx.doi.org/10.1115/1.4051306

T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, et al., J. Mater. Chem. A, 3, 23829-23832 (2015). https://doi.org/10.1039/C5TA05741H

L.C. Tang, C.S. Chang, L.C. Tang, and J.Y. Huang, J. Phys. Condens. Matter, 12, 9129-9143 (2017). https://doi.org/10.1088/0953-8984/12/43/303

F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 11445-11452 (2015). https://doi.org/10.1021/jacs.5b06658

S. Shao, J. Liu, G. Portale, H. Fang, G.R. Blake, G.H. TenBrink, L.J.A. Koster, et al., Ad Energy Mat. 1702019 (2017). https://doi.org/10.1002/aenm.201702019

Y. Takahashi, H. Hasegawa, Y. Takahashi, and T. Inabe, J. Solid State Chem. 205, 39. (2013). https://doi.org/10.1016/j.jssc.2013.07.008

W. Ming, H. Shi, and M.H. Du, J. Mater. Chem. A, 4, 13852-13858 (2016). https://doi.org/10.1039/C6TA04685A

L.Y. Huang, and W.R.L. Lambrecht, Phys. Rev. B, 88, 165203 (2013). https://doi.org/10.1103/PhysRevB.88.165203

D.J. Singh, J. Appl. Phys. 112, 083509 (2012). https://doi.org/10.1063/1.4759240

I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, et al., J. Am. Chem. Soc. 134, 8579-8587 (2012). https://doi.org/10.1021/ja301539s

C. Kaewmeechai, Y. Laosiritaworn, and A.P. Jaroenjittichai, J. Phys.: Conf. Ser. 1380, 012112 (2019). https://doi.org/10.1088/1742-6596/1380/1/012112

G.L. McPherson, A.M. McPherson, and J.L. Atwood, J. Phys. Chem. Solids, 41, 495 (1980). https://doi.org/10.1016/0022-3697(80)90180-8

A.P. Shpak, O.A. Glike, A.G. Dmitriev, P.A. Rodnyi, A.S. Voloshinovskii, and S.M. Pidzyrailo, J. Electron. Spectrosc. Relat. Phenom. 68, 335-338 (1994). https://doi.org/10.1016/0368-2048(94)02131-7

G.L. McPherson, T.J. Kistenmacher, and G.D. Stucky, J. Chem. Phys. 52, 815-824 (1970). https://doi.org/10.1063/1.1673061

P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comp. Phys. Commun. 59, 399-415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, wien2k, An Augment. Pl. Wave+ Local Orbitals Progr. Calc. Cryst, Prop, 2001.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

F.D. Muranghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1994).

G. Shwetha, V. Kanchanaa, and G. Vaitheeswaran, J. of Solid State of Chem. 227, 110–116 (2015). https://doi.org/10.1016/j.jssc.2015.03.024

A. Kumar, A. Kumar, K. Kumar, R.P. Singh, R. Singh, and R. Kumar, East European Journal of Physics, (1), 109-117 (2023). https://doi.org/10.26565/2312-4334-2023-1-13

A. Kumar, R. Gautam, R.P. Singh, and A. Kumar, International Journal of Advanced Science and Technology, 29(08), 1150 1158 (2020).

A. Kumar, R. Guatam, S. Chand, A. Kumar, and R.P. Singh, Materials Physics & Mechanics, 42(1), 112-130 (2019). http://dx.doi.org/10.18720/MPM.4212019_10

Published
2024-03-05
Cited
How to Cite
Kumar, A., Gupta, H., Kumar, D., Sharma, R., Kumar, A., Sharma, S. K., & Singh, A. P. (2024). Study of Structural and Electronic Properties of CsMgCl3 Compound. East European Journal of Physics, (1), 355-360. https://doi.org/10.26565/2312-4334-2024-1-33