Thermal Properties and Mass Spectra of Heavy Mesons in the Presence of a Point-Like Defect

  • Etido P. Inyang Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia https://orcid.org/0000-0002-5031-3297
  • Norshamsuri Ali Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia; Centre of Excellence Advanced Communication Engineering (ACE), Universiti Malaysia Perlis, Arau, Perlis, Malaysia https://orcid.org/0000-0002-9348-0714
  • Rosdisham Endut Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia; Centre of Excellence Advanced Communication Engineering (ACE), Universiti Malaysia Perlis, Arau, Perlis, Malaysia https://orcid.org/0000-0003-3659-9740
  • Nursalasawati Rusli Institute of Engineering Mathematics, Universiti Malaysia Perlis, Arau, Perlis, Malaysia https://orcid.org/0009-0006-0153-8461
  • Syed Alwee Aljunid Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia; Centre of Excellence Advanced Communication Engineering (ACE), Universiti Malaysia Perlis, Arau, Perlis, Malaysia https://orcid.org/0000-0003-2739-6220
  • N.R. Ali School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia
  • Muhammad Muhammad Asjad Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates https://orcid.org/0000-0001-6895-3332
Keywords: Schrödinger equation, Nikiforov-Uvarov method, Cornell Potential, Mass Spectra, Topological Defect

Abstract

In this research, the radial Schr¨odinger equation is solved analytically using the Nikiforov-Uvarov method with the Cornell potential. The energy spectrum and the corresponding wave function are obtained in close form. The effect of Topological Defect on the thermal properties and mass spectra of heavy mesons such as charmonium and bottomonium are studied with the obtained energy spectrum. It is found that the presence of the Topological Defect increases the mass spectra and moves the values close to the experimental data. Our results agreed with the experimental data and are seen to be improved when compared with other works.

Downloads

Download data is not yet available.

References

E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and I.O. Akpan, “Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model,” Molecular Physics. 119(23), e1956615 (2021). https://doi.org/10.1080/00268976.2021.1956615

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons,” Few-Body Systems, 63, 7 (2022). https://doi.org/10.1007/s00601-021-01705-1

E.P. Inyang, E. Omugbe, M. Abu-shady and E.S. William, “Investigation of Quantum Information Theory with the screened modified Kratzer and a class of Yukawa potential model,” The European Physical Journal Plus, 138, 969 (2023). https://doi.org/10.1140/epjp/s13360-023-04617-7

J.A. Obu, E.P. Inyang, J.E. Ntibi, I.O. Akpan, E.S. William, and E.P. Inyang, “The Effect of Debye Mass on the Mass Spectra of Heavy Quarkonium System and Its Thermal Properties with Class of Yukawa Potential,” Jordan Journal of Physics, 16(3), 329-339 (2023). https://doi.org/10.47011/16.3.8

F.O. Faithpraise, and E.P. Inyang, “Bound State and Ro-Vibrational Energies Eigenvalues Of Selected Diatomic Molecules With A Class Of Inversely Quadratic Yukawa Plus Hulthén Potential Model,” East European Journal of Physics, 3, 158-166 (2023). https://doi.org/10.26565/2312-4334-2023-3-12

E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”, Indian Journal of Physics, 95, 2733–2739 (2021). https://doi.org/10.1007/s12648-020-01933-x

C. Eckart, “The Penetration of a potential Barrier by Electrons,” Phys. Rev. 35, 1303 (1930). https://doi.org/10.1103/PhysRev.35.1303

H. Hellmann, “A New Approximation Method in the Problem of Many Electrons,” J. Chem. Phys. 3, 61 (1935). https://doi.org/10.1063/1.1749559

S. Hassanabadi, A.A. Rajabi, and S. Zarrinkamar, “Cornell and Kratzer potentials within the semi-relativistic treatment,” Mod. Phys. Lett. A. 27, 1250057 (2012). https://doi.org/10.1142/S0217732312500575

E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model,” Indian Journal of Physics, 96, 3461-3476 (2022). https://doi.org/10.1007/s12648-022-02308-0

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the massspectra of the Quark-antiquark systems in a non-relativistic framework,” Jordan Journal of Physics, 14(4), 339-347 (2021). https://doi.org/10.47011/14.4.8

I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system,” Revista Mexica De Fisica, 67(3), 482-490 (2021). https://doi.org/10.31349/RevMexFis.67.482

J.A. Obu, E.P. Inyang, E.S. William, D.E. Bassey, and E.P. Inyang, “Comparative Study of The Mass Spectra of Heavy Quarkonium System with an Interacting Potential Mode,” East Eur. J. Phys. 3, 146-157 (2023). https://doi.org/10.26565/2312-4334-2023-3-11

E.P. Inyang, J. Ntibi, E.A. Ibanga, F. Ayedun, E.P. Inyang, and E. William, “Thermal Properties, Mass Spectra and Root Mean Square Radii of Heavy Quarkonium System with Class of Inversely Quadratic Yukawa Potential,” AIP Conference Proceedings 2679, 030003 (2023). https://doi.org/10.1063/5.0112829

E.S. William, S.C. Onye, A.N. Ikot, A.N. Nwachukwu, E.P. Inyang, I.B. Okon, I.O. Akpan, and B.I. Ita, “Magnetic susceptibility and Magnetocaloric effect of Frost-Musulin potential subjected to Magnetic and Aharonov-Bohm (Flux) for CO and NO diatomic molecules,” Journal of Theoretical and Applied Physics, 17(12), 172318 (2023). https://doi.org/10.30495/JTAP.172318

F. Ayedun, E.P. Inyang, E.A. Ibanga, and K.M. Lawal, “Analytical Solutions to The Schrödinger Equation with Collective

Potential Models: Application to Quantum Information Theory,” East Eur. J. Phys. 4, 87-98 (2022).

https://doi.org/10.26565/2312-4334-2022-4-06

E.S. William, E.P. Inyang and E.A. Thompson, “Arbitrary l -solutions of the Schrödinger equation interacting with Hulthen-

Hellmann potential model,” Revista Mexicana de Fisica, 66(6), 730-741 (2020). https://doi.org/10.31349/RevMexFis.66.730

E.P. Inyang, E.O. Obisung, J. Amajama, D.E Bassey, E.S William, and I.B. Okon, “The Effect of Topological Defect on the

Mass Spectra of Heavy and Heavy-Light Quarkonia,” Eurasian Physical Technical Journal, 19(4), 78-87 (2022).

https://doi.org/10.31489/2022No4/78-87

E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, “Masses and thermal properties of a

Charmonium and Bottomonium Mesons,” Journal of the Nigerian Society of Physical Sciences, 4, 875-884 (2022).

https://doi.org/10.46481/jnsps.2022.884

E.P. Inyang, and E.O. Obisung, “The study of electronic states of NI and ScI molecules with screened Kratzer potential,” East

European Journal of Physics, 3, 32-38 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov –Functional Analysis

(NUFA) Method: A new approach for solving exponential – Type potentials,” Few-Body System, 62, 9 (2021).

https://doi.org/10.1007/s00601-021-021-01593-5

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, “Quark-antiquark study with inversely quadratic

Yukawa potential using Nikiforov-Uvarov-Functional analysis method,” East European Journal of Physics, 2, 43-51 (2022).

https://doi.org/10.26565/2312-4334-2022-2-05

E.P. Inyang, E.P. Inyang, E.S. William, J.E. Ntibi, and E.A. Ibanga, “Bound State Solutions of the Schrödinger equation with

Frost-Musulin potential using the Nikiforov-Uvarov-Functional Analysis (NUFA) method,” Bulgarian Journal of Physics,

(4), 329-339 (2022). https://doi.org/10.55318/bgjp.2022.49.4.329

I.B. Okon, C.A. Onate, R. Horchani, O.O. Popoola, E. Omugbe, E.S. William, U.S. Okorie, et al., “Thermomagnetic properties

and its efects on Fisher entropy with Schioberg plus Manning-Rosen potential (SPMRP) using Nikiforov-Uvarov functional

analysis (NUFA) and supersymmetric quantum mechanics (SUSYQM) methods,” Scientifc Reports, 13, 8193 (2023).

https://doi.org/10.1038/s41598-023-34521-0

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of

Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method,” Revista

Mexicana de Fisica, 68, 020401 (2022). https://doi.org/10.31349/RevMexFis.68.020401

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrodinger

equation with Hulthen plus screened Kratzer potential using the Nikiforov-Uvarov-Functional analysis method: An Application

to diatomic molecules,” Canadian Journal of Physics, 100(10), (2022). https://doi.org/10.1139/cjp-2022-0030

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer

potential (SKP) using series expansion method,” Eur. Phys. J. Plus, 87, 136 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthen –

screened Kratzer potential: Application to diatomic molecules,” East European Journal of Physics, 1, 12-22 (2022).

https://doi.org/10.26565/2312-4334-2022-2-02

E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, “Analytical solutions of the Schrödinger equation with Kratzer-screened

Coulomb potential for a Quarkonium system,” Bulletin of Pure and applied Sciences - Physics, 40(1), 12-24 (2020).

https://acspublisher.com/journals/index.php/bpasphy/article/view/8660

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, “Exact solution of the N-dimensional Radial Schrödinger Equation via

Laplace Transformation method with the Generalized Cornell potential,” Journal of theoretical Physics, 45, 567-587 (2018).

https://doi.org/10.48550/arXiv.1802.02092

E.P. Inyang, I.B. Okon, F.O. Faithpraise, E.S. William, P.O. Okoi, and E.A. Ibanga, “Quantum mechanical treatment of

Shannon entropy measure and energy spectra of selected diatomic molecules with the modified Kratzer plus generalized inverse

quadratic Yukawa potential model,” Journal of Theoretical and Applied Physics, 17(4), 1-13 (2023).

https://dx.doi.org/10.57647/j.jtap.2023.1704.40

E.P. Inyang, F.O. Faithpraise, J. Amajama, E.S. William, E.O. Obisung, and J.E. Ntibi, “Theoretical Investigation of Meson

Spectrum using Exact Quantization Rule Technique,” East European Journal of Physics, 1, 53-62 (2023).

https://doi.org/10.26565/2312-4334-2023-1-05

E. Omugbe, O.E. Osafile, and M.C. Onyeajh, “Mass spectrum of mesons via WKB Approximation method,” Advances in High

Energy Physics, 10, 1143 (2020). https://doi.org/10.1155/2020/5901464

E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation

under the Deng-Fan potential by WKB and SWKB methods,” Physica Scripta, 96(12), 125408 (2021).

https://doi.org/10.1088/1402-4896/ac38d4

E. Omugbe, E.P. Inyang, I.J. Njoku, C. Martínez-Flores, A. Jahanshir, I.B. Okon, E.S. Eyube, et al., “Approximate mass spectra

and root mean square radii of quarkonia using Cornell potential plus spin-spin interactions,” Nuclear Physics A, 1034, 122653

(2023). https://doi.org/10.1016/j.nuclphysa.2023.122653

E. Omugbe, J.N. Aniezi, E.P. Inyang, I.J. Njoku, C.A. Onate, E.S. Eyube, S.O. Ogundeji, et al., “Non-relativistic Mass Spectra

Splitting of Heavy Mesons Under the Cornell Potential Perturbed by Spin–Spin, Spin–Orbit and Tensor Components,” Few-

Body System, 64, 66 (2023). https://doi.org/10.1007/s00601-023-01848-3

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of

the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method,” Mathematics, 10,

(2022). https://doi.org/10.3390/math10152824

C.O. Edet, E.B. Al, F. Ungan, E.P. Inyang, N. Ali, M.M. Ramli, R. Endut, and S.A. Aljunid, “Influence of perturbations on

linear and nonlinear optical properties of quantum dot,” The European Physical Journal Plus, 138, 904 (2023).

https://doi.org/10.1140/epjp/s13360-023-04519-8

M. Abu-Shady, and E.P. Inyang, “The Fractional Schrödinger Equation With The Generalized Woods-Saxon Potential,” East

European Journal of Physics, 1, 63-68 (2023). https://doi.org/10.26565/2312-4334-2023-1-06

A.N. Ikot, L.F. Obagboye, U.S. Okorie, E.P. Inyang, P.O. Amadi, and A. Abdel-Aty, “Solutions of Schrodinger equation with

generalized Cornell potential (GCP) and its applications to diatomic molecular systems in D-dimensions using Extended

Nikiforov–Uvarov (ENU) formalism,” The European Physical Journal Plus, 137, 1370 (2022).

https://doi.org/10.1140/epjp/s13360-022-03590-x

M. Abu-Shady, and E.P. Inyang, “Heavy-Light Meson masses in the Framework of Trigonometric Rosen-Morse Potential using the

Generalized Fractional Derivative,” East European Journal of Physics, 4, 80-87 (2022). https://doi.org/10.26565/2312-4334-2022-4-06

H. Ciftci, and H.F. Kisoglu, “Nonrelativistic-Arbitrary l-states of quarkonium through Asymptotic Iteration method,” Advances

in High Energy Physics, 2018, 4549705 (2018). https://doi.org/10.1155/2018/4549705

H. Mutuk, “Mass Spectra and Decay constants of Heavy-light Mesons: A case study of QCD sum Rules and Quark model,”

Advan. in High Energy Phys. 8095653 (2018). https://doi.org/10.1155/2018/8095653

M. Allosh, Y. Mustafa, N.K. Ahmed, and A.S. Mustafa, “Ground and Excited state mass spectra and properties of heavy-light

mesons,” Few-Body Syst. 62, 26 (2021). https://doi.org/10.1007/s00601-021-01608-1

M.S. Ali, G.S. Hassan, A.M. Abdelmonem, S.K. Elshamndy, F. Elmasry, and A.M. Yasser, “The spectrum of charmed

quarkonium in non-relativistic quark model using matrix Numerov’s method,” J. Rad. Research and Applied Sciences, 13, 233

(2020). https://doi.org/10.1080/16878507.2020.1723949

H. Mansour, and A. Gamal, “Bound state of Heavy Quarks using a General polynomial potential,” Adv. in High Ener. Phys.

(2018). https://doi.org/10.1155/2018/7269657

A. Al-Oun, A. Al-Jamel, and H. Widyan, “Various properties of Heavy Quakonium from Flavor-independent Coulomb plus

Quadratic potential,” Jord. J. Phys. 40, 453-464 (2015).

M. Abu-Shady, “N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method,” J. Egypt.

Math. Soc. 25, 86-89 (2017). https://doi.org/10.1016/j.joems.2016.06.006

R. Rani, S.B. Bhardwaj and F. Chand, “Mass spectra of heavy and light mesons using asymptotic iteration method,” Commun.

Theor. Phys. 70, 179 (2018). https://doi.org/10.1088/0253-6102/70/2/179

R. Kumar, R.M. Singh, S.B. Bhahardivaj, R. Rani and F. Chand, “Analytical solutions to the Schrodinger equation for

generalized Cornell potential and its application to diatomic molecules and heavy mesons,” Mod. Phys. Lett. A, 37, 2250010

(2022). https://doi.org/10.1142/S0217732322500109

A. Vega and J. Flores, “Heavy quarkonium properties from Cornell potential using variational method and supersymmetric

quantum mechanics,” Pramana-J. Phys. 87, 73 (2016). https://doi.org/10.1007/s12043-016-1278-7

H. Mutuk, “Cornell Potential: A Neural Network Approach,” Advan. in High Energy Phys. 2019, 3105373 (2019).

https://doi.org/10.1155/2019/3105373

H. Hassanabadi, M. Ghafourian and S. Rahmani, “Study of the Heavy-Light mesons properties via the Variational method for

Cornell interaction,” Few-Body Syst. 57, 249–254 (2016). https://doi.org/10.1007/s00601-015-1040-6

E.P. Inyang, A.N. Ikot, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E. Omugbe, and E.S. William, “Analytic study of thermal

properties and masses of heavy mesons with quarkonium potential,” Results in Physics. 39, 105754 (2022).

https://doi.org/10.1016/j.rinp.2022.105754

M. Abu-Shady, T.A. Abdel-Karim, and Y. Ezz-Alarab, “Masses and thermodynamic properties of heavy mesons in the nonrelativistic

quark model using the Nikiforov-Uvarov method”, Journal of Egyptian Mathematical Society, 23, 155 (2019).

https://doi.org/10.1186/s42787-019-0014-0

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium

system,” Canadian Journal Physics, 99, 990 (2021). https://doi.org/10.1139/cjp-2020-0578

M. Abu-Shady, and S.Y. Ezz-Alarab, “Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for

Meson Properties in the Non-relativistic Quark Model Using EAIM,” Few-Body Systems, 60 66 (2019).

https://doi.org/10.1007/s00601-019-1531-y

V. Kumar, S.B. Bhardwaj, R.M. Singh and F. Chand, “Mass spectra and thermodynamic properties of some heavy and light

mesons,” Pramana J. Phys. 96, 125 (2022). https://doi.org/10.1007/s12043-022-02377-0

C.O. Edet, and A.N. Ikot, “Effect of Topological Defect on the Energy spectra and Thermo-magnetic properties of CO diatomic

molecule,” J. Low Temp. Phys. 203, 84-111 (2021). https://doi.org/10.1007/s10909-021-02577-9

A. Vilenkin, and E.P.S. Shellard, Cosmic Strings and other Topological Defects, (Cambridge University Press, Cambridge, UK, 1994).

C. Furtado, and F. Morades, “Landau levels in the presence of a screw dislocation,” Europhys. Lett. 45, 279-282 (1999).

https://doi.org/10.1209/epl/i1999-00159-8

C. Furtado, and F. Morades, “On the binding of electrons and holes to disclinations,” Phys. Lett. A, 188, 394-396 (1994).

https://doi.org/10.1016/0375-9601(94)90482-0

H. Hassanabadi, and M. Hosseinpour, “Thermodynamic properties of neutral particle in the presence of topological defects in

magnetic cosmic string background,” Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

P. Nwabuzor, C. Edet, A.N. Ikot, U. Okorie, M. Ramantswana, R. Horchani, A. Abdel-Aty, and G. Rampho, “Analyzing the

effects of Topological Defect (TD) on the Energy spectra and Thermal Properties of LiH, TiC and I2 diatomic molecules,”

Entropy, 23(8), 1060 (2021). https://doi.org/10.3390/e23081060

A. Vilenkin, “Cosmic Strings and domain walls,” Phys. Rep. 121, 263-315 (1985). https://doi.org/10.1016/0370-1573(85)90033-X

M. Barriola, and A. Vilenkin, “Gravitational field of a global monopole,” Phys. Rev. Lett. 63, 341 (1989).

https://doi.org/10.1103/PhysRevLett.63.341

G. De A. Marques, C. Furtado, V.B. Bezerra, and F. Moraes, “Landau levels in the presence of topological defects,” J. Phys. A,

Math. Gen. 34, 5945 (2001). https://doi.org/10.1088/0305-4470/34/30/306

S. Jacobs, M.G. Olsson, and C. Suchyta, “Comparing the Schrodinger and Spinless Salpeter equations for heavy-quark bound

states,” Physical Review D, 33, 3338 (1986). https://doi.org/10.1103/PhysRevD.33.3338

B. Grinstein, “A modern introduction to quarkonium theory,” Int. J. Mod. Phys. 15, 461-495 (2000).

https://doi.org/10.1142/S0217751X00000227

W. Lucha, F. Schoberl, and D. Gromes, “Bound states of quarks,” Phys. Reports. 200, 127-240 (1991).

https://doi.org/10.1016/0370-1573(91)90001-3

S. Patel, P.C. Vinodkumar, and S. Bhatnagar, “Decay rates of charmonia within a quark-antiquark confining potential,” Chinese

Physics C, 40, 053102 (2016). https://doi.org/10.1088/1674-1137/40/5/053102

V. Mateu, P.G. Ortega, D.R. Entem, and F. Fernadez, “Calibrating the nave Cornell model with NRQCD,” The European

Physical Journal C, 79, 323 (2019). https://doi.org/10.1140/epjc/s10052-019-6808-2

F. Brau, and C. Sernay, “The three-dimensional Fourier grid Hamiltonian method,” Journal of computational physics, 139, 127-

(1998). https://doi.org/10.1006/jcph.1997.5866

A. Bhaghyesh, “Charmonium properties using the Discrete variable representation (DVR)method,” Advances in High Energy

Physics, 2021, 9991152 (2021). https://doi.org/10.1155/2021/9991152

C.O. Edet, and P.O. Okoi, “Any l-state solutions of the Schrodinger equation for q-deformed Hulthen plus generalized inverse

quadratic Yukawa potential in arbitrary dimensions,” Revista Mexicana De Fisica, 65, 333-344 (2019).

https://doi.org/10.31349/RevMexFis.65.333

E.P. Inyang, F. Ayedun, E.A. Ibanga, K.M. Lawal, I.B. Okon, E.S. William, O. Ekwevugbe, et al., “Analytical Solutions of the

N-Dimensional Schrödinger equation with modified screened Kratzer plus Inversely Quadratic Yukawa potential and

Thermodynamic Properties of selected Diatomic Molecules,” Results in Physics, 43, 106075 (2022).

https://doi.org/10.1016/j.rinp.2022.106075

K.R. Purohit, P. Jakhad, and A.K. Rai, “Quarkonium spectroscopy of the linear plus modified Yukawa potential,” Phys. Scripta,

, 044002 (2022). https://doi.org/10.1088/1402-4896/ac5bc2

M. Abu-shady, C.O. Edet, and A.N. Ikot, “Non-relativistic Quark model under external magnetic and Aharanov-Bohm (AB)

fields in the presence of Temperature-Dependent confined Cornell potential,” Canadian J. Phys. 99(11), (2021).

https://doi.org/10.1139/cjp-2020-0101

R. Olive, D.E. Groom, and T.G. Trippe, Particle Data Group, Chin. Phys. C, 38, 60 (2014). https://doi.org/10.1088/1674-

/38/9/090001

M. Tanabashi, C.D. Carone, T.G. Trippe, and C.G. Wohl, Particle Data Group, Phys. Rev. D, 98, 546 (2018).

https://doi.org/10.1103/PhysRevD.98.030001

S.K. Nikiforov, and V.B. Uvarov, Special functions of Mathematical Physics, (Birkhauser, Basel, 1988).

E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon, “Non-Relativistic study of mass spectra and thermal properties of a

quarkonium system with Eckart-Hellmann potential,” East European Journal of Physics, 3, 104-114 (2022).

https://doi.org/10.26565/2312-4334-2022-3-14

E.S. William, E.P. Inyang, J.E. Ntibi, J.A. Obu, and E.P. Inyang, “Solutions of the Non-relativistic Equation Interacting with

the Varshni-Hellmann potential model with some selected Diatomic molecules,” Jordan Journal of Physics, 15(2), 179-193

(2022). https://doi.org/10.47011/15.2.8

E.S. William, I.B. Okon, O.O. Ekerenam, I.O. Akpan, B.I. Ita, E.P. Inyang, I.P. Etim, and I.F. Umoh, “Analyzing the effects of

magnetic and Aharonov-Bohm (AB) flux fields on the energy spectra and thermal properties of N2, NO, CO, and H2 diatomic

molecules,” International Journal of Quantum Chemistry, 122(16), e26925 (2022). https://doi.org/10.1002/qua.26925

J.E. Ntibi, E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Solutions of the N-dimensional Klein-Gordon Equation

with Ultra Generalized Exponential–Hyperbolic Potential to Predict the Mass Spectra of Heavy Mesons,” Jordan Journal of

Physics, 15(4), 393-402 (2022). https://doi.org/10.47011/15.4.8

E.S. William, E.P. Inyang, I.B. Okon, O.O. Ekerenam, C.A. Onate, I.O. Akpan, A.N. Nwachukwu, et al., “Thermo-magnetic

properties of Manning-Rosen plus inversely quadratic Yukawa potential under the influence of magnetic and Aharonov-Bohm

(AB) flux fields,” Indian Journal of Physics, 97, 1359–1379 (2023). https://doi.org/10.1007/s12648-022-02510-0

E.P. Inyang, J.E. Ntibi, E.O. Obisung, E.S. William, E.E. Ibekwe, I.O. Akpan, and E.P. Inyang, “Expectation Values and

Energy Spectra of the Varshni Potential in Arbitrary Dimensions,” Jordan Journal of Physics, 5, 495-509 (2022).

https://doi.org/10.47011/15.5.7

E.P. Inyang, E.S. William, and J.A. Obu, “Eigensolutions of the N-dimensional Schrödinger equation interacting with Varshni-

Hulthen potential model,” Revista Mexicana de Fisica, 67(2), 193-205 (2021). https://doi.org/10.31349/RevMexFis.67.193

Published
2024-03-05
Cited
How to Cite
Inyang, E. P., Ali, N., Endut, R., Rusli, N., Aljunid, S. A., Ali, N., & Muhammad Asjad, M. (2024). Thermal Properties and Mass Spectra of Heavy Mesons in the Presence of a Point-Like Defect. East European Journal of Physics, (1), 156-166. https://doi.org/10.26565/2312-4334-2024-1-13