Effect of Gadolinium Content on Magnetic and Structural Characteristics of NFGO Nano-Particles

  • Sara Durga Bhavani Department of Chemistry, Government Degree College Rajendranagar, Rangareddy District, Telangana, India; Department of Chemistry, Gandhi Institute of Technology and Management, Hyderabad, Telangana, India.
  • K. Vijaya Kumar Department of Physics, JNTUH University College of Engineering Jagtial, Nachupally (Kondagattu), Jagtial District, Telangana, India https://orcid.org/0000-0001-6160-8632
  • A.T. Raghavender Department of Physics, International School of Technology and Sciences for Women, Rajamahendravaram, East Godavari, Andhra Pradesh, India
  • J. Arout Chelvane Advanced Magnetic Group, Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Telangana, India
  • B. Purna Chandra Rao Department of Chemistry, Gandhi Institute of Technology and Management, Hyderabad, Telangana, India https://orcid.org/0000-0001-7266-3338
Keywords: Gadolinium doped nickel ferrite nano-particles, Sol gel auto-combustion, XRD, SEM and magnetic properties

Abstract

Sol gel auto-combustion was used to create gadolinium doped nickel ferrite nano-particles, which have chemical composition NiFe2‑xGdxO4 (x = 0.00, 0.010, 0.15, 0.20 & 0.25). The investigation focused on how the composition of Gd+3 affected the magnetic properties and structural parameters. Magnetic properties were investigated using VSM technique, structural properties were determined using XRD and SEM techniques. XRD graphs verified the establishment of the spinel ferrite phase. With an increase in Gd composition, the crystallite size and lattice parameter increased from 21.0288 to 27.04125 nm and 8.3325 to 8.3367Å, respectively. It was also evident how the composition of Gd+3 affected the estimation of bond-angles and lengths in tetrahedral and octahedral structures. SEM micrographs showed that all of the grains had a small amount of agglomeration and that all of the synthesized compositions were homogenous. The range of 140.5–176.2 nm was found to be the average grain size. Using VSM at 300K, magnetic parameters like coercivity, residual magnetization, and saturation magnetization were computed. Until the composition was 0.20, the saturation magnetization and residual magnetization dropped from 30.28 emu/g to 15.35 emu/g and 5.07 emu/g to 3.65 emu/g, respectively. After that, they increased to 34.40 emu/g and 6.52 emu/g, respectively. Until composition 0.20, coercivity was raised from 154 to 261 Oe; after that, it was lowered to 233 Oe.

Downloads

Download data is not yet available.

Author Biography

K. Vijaya Kumar, Department of Physics, JNTUH University College of Engineering Jagtial, Nachupally (Kondagattu), Jagtial District, Telangana, India

Professor of Physics

References

X. Li, J. Wei, K.E. Aifantis, Y. Fun, Q. Feng, F.-Z. Cui, and F. Watari, Journal of Biomedical Materials Research Part A, 104(5), 1285 (2016). http://dx.doi.org/10.1002/jbm.a.35654

K.K. Kefeni, T.A. Msagati, T.T. Nkambule, and B.B. Mamba, Mater. Sci. Eng. C: Mater. Biol. Appl. 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314

K.K. Kefeni, and B.B. Mamba, Sustainable Materials and Technologies, 23, e00140 (2020). https://doi.org/10.1016/j.susmat.2019.e00140

M.I. Hussain, M. Xia, X.N. Ren, K. Akhtar, A. Nawaz, S.K. Sharma, and Y. Javed, in: Magnetic Nanoheterostructures, (Springer, Cham, 2020), pp. 243-265.

P.B. Kharat, B.S. Sandeep, P.K. Pankaj, and K.M. Jadhav, ACS omega, 5(36), 23378 (2020). https://doi.org/10.1021/acsomega.0c03332

L.B. Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, et al., J. Magn. Magn. Mater. 320, 3242 (2008). https://doi.org/10.1016/j.jmmm.2008.06.031

M.M. Rashad, R.M. Mohamed, and H. El-Shall, J. Mat. Proc. Tech. 198(1–3), 139146 (2008). https://doi.org/10.1016/j.jmatprotec.2007.07.012

S.B. Narang, and K. Pubby, Journal of Magnetism and Magnetic Materials, 519, 167163 (2020), https://doi.org/10.1016/j.jmmm.2020.167163

K.V. Kumar, Advances in Materials Physics and Chemistry, 12(3), 33 (2022). https://doi.org/10.4236/ampc.2022.123003

V.A. Bharati, S.R. Patade, S. Bajaj, R. Parlikar, A.P. Keche, and V.V. Sondur, Journal of Physics: Conference Series, 1644, (1), 0120005 (2020). https://doi.org/10.1088/17426596/1644/1/012005

N. Soltani, A.B. Syuhada, W.M.M. Yunus, E. Saion, and A. Bahrami, Solid State Comm. 192, 15 (2014). http://dx.doi.org/10.1016/j.ssc.2014.05.002

K.V. Kumar, R. Sridhar, and D. Ravinder, International Journal of Nano-particle Research, 2(6), (2018). https://doi.org/10.28933/ijnr-2018-01-0302

V.S. Puli, S. Adireddy, and C.V. Ramana, J. Alloys and Comp. 644, 470 (2015). http://dx.doi.org/10.1016%2Fj.jallcom.2015.05.031

M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A.A. Tahir, C. Wang, and W. Luo, Journal of Energy Chemistry, 66, 314 (2022). https://doi.org/10.1016/j.jechem.2021.08.023

J. Jiang, L. Li, F. Xu, and Y. Xie, Materials Science and Engineering: B, 137(1-3), 166 (2007). http://dx.doi.org/10.1016/j.mseb.2006.11.014

J. Jing, L. Liangchao, and X. Feng, Journal of Rare Earths, 25(1), 79 (2007). https://doi.org/10.1016/S1002-0721(07)60049-0

N.C. Sena, T.J. Castro, V.K. Garg, A.C. Oliveira, P.C. Morais, S.W. da Silva, 43(5), 4042 (2017). https://doi.org/10.1016/j.ceramint.2016.11.155

Z.K. Heiba, M.B. Mohamed, L. Arda, and N. Dogan, Journal of Magnetism and Magnetic Materials, 391, 195 (2015). https://doi.org/10.1016/j.jmmm.2015.05.003

K.R. Krishna, K.V. Kumar, and R. Dachepalli, Advances in Materials Physics and Chemistry, 2, 185 (2012). http://dx.doi.org/10.4236/ampc.2012.23028

K.V. Kumar, and S.D. Bhavani, Science of Sintering, 54(4), 457 (2022). https://doi.org/10.2298/SOS2204457K

A.T. Raghavender, N. Biliškov, and Z. Skoko, Materials Letters, 65(4), 677 (2011). https://doi.org/10.1016/j.matlet.2010.11.071

L.J. Berchmans, R.K. Selvan, and C.O. Augustin, Materials Letters, 58, 1928 (2004). http://dx.doi.org/10.1016/j.matlet.2003.12.008

Z. Yue, J. Zhou, L. Li, X. Wang, and Z. Gui, Materials Science and Engineering: B, 86, 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2

V.K. Katrapally, and S.D. Bhavani, Phase Transitions, 95(11), 770 (2022). https://doi.org/10.1080/01411594.2022.2117622

[25] S.D. Bhavani, A.T. Raghavender, K.V. Kumar, and B.P.C. Rao, Eur. Chem. Bull. 12(Special Issue 4), 10479 2023. https://doi.org/10.31838/ecb/2023.12.si4.0572023.22/04/202

V. Patil, S.E. Shirsath, S. More, S. Shukla, and K. Jadhav, Journal of Alloys and Compounds, 488, 199 (2009). https://doi.org/10.1016/j.jallcom.2009.08.078

M. Kumari, and M.C. Bhatnagar, AIP Conference Proceedings, 2220(1), 110042 (2020). http://dx.doi.org/10.1063/5.0002231

M.A. Yousuf, M.M. Baig, N.F. Al-Khali, M.A. Khan, M.F. Aly Aboud, I. Shakir, and M.F. Warsi, Ceram. Int. 45, 10936 (2019). http://dx.doi.org/10.1016/j.ceramint.2019.02.174

T. Ahmad, S. Khatoon, K. Coolahan, and S. Lofland, Journal of Materials Research, 28, 1245 (2013). https://doi.org/10.1557/jmr.2013.69

R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbanek, M. Machovsky, et al., Journal of Materials Science: Materials in Electronics, 29, 15878 (2018). https://doi.org/10.1007/s10854-018-9674-z

P.P. Naik, R.B. Tangsali, S.S. Meena, and S.M. Yusuf, Mater. Chem. Phys. 191, 215 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.032

Z. Yan, and J. Luo, J. Alloys Compd. 695, 1185 (2017). https://doi.org/10.1016/j.jallcom.2016.08.333

Z. Karimi, Y. Mohammadifar, H. Shokrollahi, Sh.Kh. Asl, Gh. Yousefi, and L. Karimi, J. Magn. Magn. Mater. 361, 150 (2014). https://doi.org/10.1016/j.jmmm.2014.01.016

Z.K. Heiba, M.B. Mohamed, L. Arda, and N. Dogan, Journal of Magnetism and Magnetic Materials, 391, 195 (2015). https://doi.org/10.1016/j.jmmm.2015.05.003

M.A. Dar, and D. Varshney, J. Magn. Magn. Mater. 436, 101 (2017). https://doi.org/10.1016/j.jmmm.2017.04.046

T. Sodaee, A. Ghasemi, and E. Paimozd, Materials Physics and Mechanics, 17, 11 (2013). https://www.ipme.ru/e-journals/MPM/no_11713/MPM117_03_sodaee.pdf

T. Sodaee, A. Ghasemi, E. Paimozd, A. Paesano, and A. Morisako, Journal of electronic materials, 42, 2771 (2013). https://link.springer.com/article/10.1007/s11664-013-2656-2#citeas

K.K. Bamzai, G. Kour, B. Kaur, M. Arora, and R.P. Pant, Journal of magnetism and magnetic materials, 345, 255 (2013). https://doi.org/10.1016/j.jmmm.2013.07.002

M.L. Kahn, and Z.J. Zhang, Applied Physics Letters, 78(23), 3651 (2001). https://doi.org/10.1063/1.1377621

Published
2024-03-05
Cited
How to Cite
Bhavani, S. D., Kumar, K. V., Raghavender, A., Chelvane, J. A., & Rao, B. P. C. (2024). Effect of Gadolinium Content on Magnetic and Structural Characteristics of NFGO Nano-Particles. East European Journal of Physics, (1), 308-314. https://doi.org/10.26565/2312-4334-2024-1-27