Evolution of Mechanical Properties of Pb–Sb–Sn–As–Se Grid Alloys for Lead-Acid Batteries During Natural Aging

  • Victor O. Dzenzerskiy Institute of Transport Systems and Technologies of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0002-9722-1920
  • Serhii V. Tarasov Institute of Transport Systems and Technologies of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0002-9254-1503
  • Elena V. Sukhova Institute of Transport Systems and Technologies of National Academy of Sciences of Ukraine https://orcid.org/0000-0001-8002-0906
  • Volodymyr A. Ivanov Institute of Transport Systems and Technologies of National Academy of Sciences of Ukraine, Dnipro, Ukraine http://orcid.org/0009-0008-9836-6508
Keywords: Lead-acid batteries, Low-antimony Pb–Sb–Sn–As–Se grid alloys, Natural aging during storage, Tensile tests, Ultimate tensile strength, Yield strength, Elongation, Young's modulus

Abstract

This study is devoted to the investigation of mechanical properties of a series of low-antimony Pb–Sb–Sn–As–Se grid alloys for lead-acid batteries in as-cast condition and after natural aging during storage. Mechanical properties were characterized by ultimate tensile strength, yield strength, elongation, and Young's modulus determined at room temperature using TIRAtest 2300 and P-0.5 universal testing machines. For most investigated as-cast alloys, an increase in ultimate tensile strength is accompanied by an increase in elongation. Within the temperature range between 70 ºС and 150 ºС, higher heating temperature of a casing mold does not markedly affect average elongation but causes the slight decrease (by ~4 %) in average ultimate tensile strength. When aged during storage for 30–33 days, the Pb–Sb–Sn–As–Se grid alloys, attain higher values of ultimate tensile strength, yield strength, and Young's modulus but lower values of elongation. This is due to precipitation of second-phase particles from lead-based solid solution oversaturated by antimony, arsenic, and selenium. The most noticeable effect of strengthening is observed during first five days of natural aging.

Downloads

Download data is not yet available.

References

S. Guruswamy, Engineering Properties and Applications of Lead Alloys, (CRC Press, New York, 2000). https://doi.org/10.1201/9781482276909

D.A.J. Rand, T. Moseley, J. Garche, and C.D. Parker, Valve-Regulated Lead-Acid Batteries, (Elsevier, Amsterdam, 2004). https://doi.org/10.1016/B978-0-444-50746-4.X5000-4

A.H. Seikh, E.-S.M. Sherif, S.M.A. Khan Mohammed, M. Baig, M.A. Alam, and N. Alharthi, PLOS One. 13(4), 1 (2018). https://doi. org/10.1371/journal.pone.0195224

H.T. Liu, C.X. Yang, H.H. Liang, J. Yang, and W.F. Zhou, J. Power Sources. 103(2), 173 (2002). https://doi.org/10.1016/S0378-7753(01)00839-4

W.-B. Cai, Y.-Q. Wan, H.-T. Liu, and W.-F. Zhou, Chin. J. Chem. 14(2), 138 (1996). https://doi.org/ 10.1002/cjoc.19960140208

T. Hirasawa, K. Sasaki, M. Taguchi, and H. Kaneko, J. Power Sources. 85(1), 44 (2000). https://doi.org/10.1016/S0378-7753(99)00380-8

M. Viespoli, A. Johanson, A. Alvaro, B. Nyhus, A. Sommacal, and F. Berto, Mater. Sci. Eng. A 744, 365 (2019). https://doi.org/10.1016/j.msea.2018.12.039

T. Gancarz and W. Gasior, J. Chem. Eng. Data. 63(5), 1471-1479 (2018). https://doi.org/10.1021/acs.jced.7b01049

S.E. Kisakurek, J. Mater. Sci. 19(7). 2289-2305 (1984). https://doi.org/10.1007/BF01058106

R.D. Prengaman, J. Power Sources. 67(1-2), 267-278 (1997). https://doi.org/10.1016/S0378-7753(97)02512-3

K. Sawai, Y. Tsuboi, Y. Okada, M. Shiomi, and S. Osumi, J. Power Sources. 179(2), 799-807 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.106

D.A.J. Rand, D.P. Boden, C.S. Lakshmi, R.R. Nelson, and R.D. Prengaman, J. Power Sources. 107(2), 280-300 (2002). https://doi.org/10.1016/S0378-7753(01)01083-7

R.D. Prengaman, J. Power Sources. 95(1-2), 224-233 (2001). https://doi.org/10.1016/S0378-7753(00)00620-0

A.G. Gad Allah, H.A.A. El-Rahman, S.A. Salih, and M.A. El-Galil, J. Appl. Electrochem. 22(6), 571-576 (1992). https://doi.org/10.1007/BF01024099

H. Li, W.X. Guo, H.Y. Chen, D.E. Finlow, H.W. Zhou, C.L. Dou, G.M. Xiao, S.G. Peng, W.W. Wei, and H. Wang, J. Power Sources. 191(1), 111-118 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.059

R.K. Shervedani, A.Z. Isfahani, R. Khodavisy, and A. Hatefi-Mehrjardi, J. Power Sources. 164(2), 890-895 (2007). https://doi.org/10.1016/ j.jpowsour.2006.10.105

M. Matrakova, A. Aleksandrova, P. Nikolov, O. Saoudi, and L. Zerroual, Bulg. Chem. Commun. 52(A), 74-79 (2020). https://doi.org/10.34049/bcc.52.A.232 74

S. Khatbi, Y. Gouale, S. Mansour, A. Lamiri, and M. Essahli, Port. Electrochim. Acta. 36(2). 133-146 (2018). https://doi.org/10.4152/pea.201802133

Y.B. Zhou, C.X. Yang, W.F. Zhou, and H.T. Liu, J. Alloys Compd. 365(1-2), 108-111 (2004). https://doi.org/10.1016/S0925-8388(03)00649-2

B. Yang, C. Xianyu, Y. Shaoqiang, L. Wei, D. Changsong, and Y. Geping, J. Energy Storage. 25, 100908 (2019). https://doi.org/10.1016/j.est.2019.100908

Z. Ghasemi and A. Tizpar, Int. J. Electrochem. Sci. 2, 700-720 (2007). https://doi.org/10.1016/S1452-3981(23)17106-9

Z. Ghasemi and A. Tizpar, Int. J. Electrochem. Sci. 3, 727-745 (2008). https://doi.org/10.1016/S1452-3981(23)15476-9

Z. Ghasemi and A. Tizpar, Appl. Surf. Sci. 252(10), 3667-3672 (2006). https://doi.org/10.1016/j.apsusc.2005.05.043

D. Slavkov, B.S. Haran, B.N. Popov, and F. Fleming, J. Power Sources. 112(1), 199-208 (2002). https://doi.org/10.1016/S0378-7753(02)00368-3

E. Rocca, G. Bourguignon, and J. Steinmetz, J. Power Sources. 161(2), 666-675 (2006). http://dx.doi.org/10.1016/ j.jpowsour.2006.04.140

C.S. Lakshmi, J.E. Manders, and D.M. Rice, J. Power Sources. 73(1), 23-29 (1998). https://doi.org/10.1016/S0378-7753(98)00018-4

M.T. Wall, Y. Ren, T. Hesterberg, T. Ellis, and M.L. Young, J. Energy Storage. 55, 105569 (2022). https://doi.org/10.1016/j.est.2022.105569

S. O’Dell, G. Ding, and S. Tewari, Metall. Mater. Trans. A 30(8), 2159-2165 (1999). https://doi.org/10.1007/s11661-999-0027-7

N. Ryoichi, Bull. Univ. Osaka Prefect. A 16(1), 145-157 (1967). http://doi.org/10.24729/00008892

S. El-Gamal, Gh. Mohammed, and E.E. Abdel-Hady, Am. J. Mater. Sci. 5(5), 97-105 (2015). https://doi.org/ 10.5923/j.materials.20150505.01

M.M. El-Sayed, F. Abd El-Salam, R. Abd El-Hasseb, and M.R. Nagy, Phys. Status Solidi. A 144(2), 329-334 (1994). https://doi.org/10.1002/pssa.2211440211

J.P. Hilger, J. Power Sources. 53(1), 45-51 (1995). https://doi.org/10.1016/0378-7753(94)01977-4

G.S. Al-Ganainy, M.T. Mostafa, and F. Abd El-Salam, Physica. B 348(1-4), 242-248 (2004). https://doi.org/10.1016/ j.physb.2003.11.096

О.V. Sukhova and Yu.V. Syrovatko, Metallofiz. Noveishie Technol. 33(Special Issue), 371-378 (2011). (in Russian)

I.M. Spiridonova, E.V. Sukhovaya, and V.P. Balakin, Metallurgia. 35(2), 65-68 (1996).

R.D. Prengaman, J. Power Sources. 53(2), 207-214 (1995). http://dx.doi.org/10.1016/0378-7753(94)01975-2

I. Spiridonova, O.V. Sukhova, and A. Vashchenko, Metallofiz. Noveishie Technol. 21(2), 122-125 (1999).

G.S. Al-Ganainy, M.T. Mostafa, and M.R. Nagy, Phys. Stat. Sol. A 165(1), 185-193 (1998). https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<185::AID-PSSA185>3.0.CO;2-M

О.V. Sukhova, V.А. Polonskyy, and К.V. Ustinоvа, Vopr. Khimii Khimicheskoi Tekhnologii. 3, 46-52 (2019). http://dx.doi.org/ 10.32434/0321-4095-2019-124-3-46-52. (in Ukrainian)

Y. Zhang, K. Shimizu, X. Year, K. Kusumoto, and V.G. Efremenko, Wear. 390-391, 135-145 (2017). https://doi.org/10.1016/ j.wear.2017.07.017

О.V. Sukhova and К.V. Ustinоvа, Funct. Mater. 26(3), 495-506 (2019). https://doi.org/10.15407/fm26.03.495

E. Gullian, L. Albert, and J.L. Caillerie, J. Power Sources. 116(1-2), 185-192 (2003). http://dx.doi.org/10.1016/S0378-7753(02)00705-X

O.V. Sukhova, V.A. Polonskyy, and K.V. Ustinova, Voprosy Khimii i Khimicheskoi Technologii. 6, 77-83 (2018). https://doi.org/10.32434/0321-4095-2018-121-6-77-83. (in Ukrainian)

S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Mater. Sci. 56(2), 263-272 (2020). https://doi.org/ 10.1007/s11003-020-00428-8

О.V. Sukhova, Phys. Chem. Solid St. 22(1), 110-116 (2021). https://doi.org/10.15330/pcss.22.1.110-116

L. Albert, A. Goguelin, and E. Jullian, J. Power Sources. 78(1-2), 23-29 (1999). https://doi.org/10.1016/S0378-7753(99)00006-3

О.V. Sukhova and V.А. Polonskyy, East Eur. J. Phys. 3, 5-10 (2020). https://doi.org/10.26565/2312-4334-2020-3-01

О.V. Sukhova, Probl. At. Sci. Technol. 4, 77-83 (2020). https://doi.org/10.46813/2020-128-077

D.M. Rosa, J.E. Spinelli, I.L. Ferreira, and A. Garcia, Metall. Mater. Trans. A 39(9), 2161-2174 (2008). https://doi.org/ 10.1007/s11661-008-9542-1

О.V. Sukhova, V.А. Polonskyy, and К.V. Ustinоvа, Mater. Sci. 55(2), 285-292 (2019). https://doi.org/10.1007/s11003-019-0030-2

V.A. Dzenzerskiy, V.F. Bashev, V.A. Polonskiy, S.V. Tarasov, Yu.I. Kazacha, V.A. Ivanov, and A.A. Kostina, Metallofiz. Noveishie Tekhnol. 36(2), 259-273 (2014). https://doi.org/10.15407/mfint.36.02.0259

Published
2023-12-02
Cited
How to Cite
Dzenzerskiy, V. O., Tarasov, S. V., Sukhova, E. V., & Ivanov, V. A. (2023). Evolution of Mechanical Properties of Pb–Sb–Sn–As–Se Grid Alloys for Lead-Acid Batteries During Natural Aging. East European Journal of Physics, (4), 182-188. https://doi.org/10.26565/2312-4334-2023-4-21