Generation of O-Mode in the Presence of Ion-Cyclotron Drift Wave Turbulence in a Nonuniform Plasma

Keywords: Ordinary mode, Density and temperature gradients, Drift wave turbulence, Wave-particle interaction

Abstract

This study aims to investigate the effect of ion-cyclotron drift wave turbulence on the generation of ordinary mode (O-mode) in the presence of density and temperature gradients. For this, a Vlasov plasma is considered where a resonant, and non-resonant modes are considered to be present in the system. Here, the non-resonant mode is a perturbation caused by O-mode in a quasi-steady state of plasma, which is characterised by the presence of low frequency ion-cyclotron resonant mode waves. The interaction between these waves is studied by the Vlasov-Maxwell set of equations and a modified Maxwellian-type distribution function for particles that includes the external force field  and associated density and temperature gradient parameters . The study analyses the growth rate of electromagnetic O-mode at the expense of ion-cyclotron drift wave energy and the associated impact of the density and temperature gradient. This model uses the linear response theory on weakly turbulent plasma, evaluates the responses due to turbulent and perturbed fields, and obtains the nonlinear dispersion relation for O-mode.

Downloads

Download data is not yet available.

References

Deka, P. N., Borgohain, A. (2012). On unstable electromagnetic radiation through nonlinear wave–particle interactions in presence of drift wave turbulence. Journal of Plasma Physics, 78(5), 515-524.

Da[1] P.N. Deka, and A. Borgohain, “On unstable electromagnetic radiation through nonlinear wave–particle interactions in presence of drift wave turbulence,” Journal of Plasma Physics, 78(5), 515-524 (2012). https://doi.org/10.1017/S0022377812000207

R.C. Davidson, and C.S. Wu, “Ordinary-mode electromagnetic instability in high- plasmas,” The Physics of Fluids, 13(5), 1407-1409 (1970). https://doi.org/10.1063/1.1693082

D.A. Gurnett, “The Earth as a radio source: Terrestrial kilometric radiation,” Journal of Geophysical Research, 79(28), 4227-4238 (1974). https://doi.org/10.1029/JA079i028p04227

L.M. Hayes, and D.B. Melrose, “Generation of ordinary mode auroral kilometric radiation from extraordinary mode waves,” Journal of Geophysical Research: Space Physics, 91(A1), 211-217 (1986). https://doi.org/10.1029/JA091iA01p00211

M.M. Mellott, W. Calvert, R.L. Huff, D.A. Gurnett, and S.D. Shawhan, “DE-1 observations of ordinary mode and extraordinary mode auroral kilometric radiation,” Geophysical research letters, 11(12), 1188-1191 (1984). https://doi.org/10.1029/GL011i012p01188

D. Ibscher, M. Lazar, and R. Schlickeiser, “On the existence of Weibel instability in a magnetized plasma. II. Perpendicular wave propagation: The ordinary mode,” Physics of Plasmas, 19(7), 072116 (2012). https://doi.org/10.1063/1.4736992

D. Ibscher, M. Lazar, M.J. Michno, and R. Schlickeiser, “Towards a complete parametrization of the ordinarymode electromagnetic instability in counterstreaming plasmas. I. Minimizing ion dynamics,” Physics of Plasmas, 20(1), 012103 (2013). https://doi.org/10.1063/1.4774066

D. Ibscher, R. Schlickeiser, “Towards a complete parametrization of the ordinary-mode electromagnetic instability in counterstreaming plasmas. II. Ion effects,” Physics of Plasmas, 20(4), 042121 (2013). https://doi.org/10.1063/1.4802929

D. Ibscher, and R. Schlickeiser, “Solar wind kinetic instabilities at small plasma betas,” Physics of Plasmas, 21(2), 022110 (2014). https://doi.org/10.1063/1.4863497

M.F. Bashir, and G. Murtaza, “Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma,” Brazilian Journal of Physics, 42(5), 487-504 (2012). https://doi.org/10.1007/s13538-012-0087-9

F. Hadi, M.F. Bashir, A. Qamar, P.H. Yoon, and R. Schlickeiser, “On the ordinary mode instability for low beta plasmas,” Physics of Plasmas, 21(5), 052111 (2014). https://doi.org/10.1063/1.4879823

R. Schlickeiser, and P.H. Yoon, “On the marginal instability threshold condition of the aperiodic ordinary mode,” Physics of Plasmas, 21(7), 072119 (2014). https://doi.org/10.1063/1.4890463

M. Nambu, “A new maser effect in plasma turbulence,” Laser and Particle Beams, 1, 427-454 (1983). https://doi.org/10.1017/S0263034600000513

V.N. Tsytovich, L. Stenflo, and H. Wilhelmsson, “Current flow in ion-acoustic and Langmuir turbulence plasma interaction,” Physica Scripta, 11(5), 251 (1975). https://doi.org/10.1088/0031-8949/11/5/001

M. Nambu, “Plasma-maser effects in plasma astrophysics,” Space science reviews, 44(3), 357-391 (1986). https://doi.org/10.1007/BF00200820

S.V. Vladimirov, and M.Y. Yu, “Brief review of the turbulent bremsstrahlung (plasma-maser) effect,” Physica Scripta, 2004(T113), 32 (2004). https://doi.org/10.1238/Physica.Topical.113a00032

P.N. Deka, K.S. Goswami, and S. Bujarbarua, “Plasma maser effect in magnetosphere plasma associated with MHD turbulence,” Planetary and space science, 45(11), 1443-1447 (1997). https://doi.org/10.1016/S0032-0633(97)00055-X

B.J. Saikia, P.N. Deka, and S. Bujarbarua, “Plasma‐Maser Instability of Bernstein Mode in Presence of Magnetohydrodynamic Turbulence,” Contributions to Plasma Physics, 35(3), 263-271 (1995). https://doi.org/10.1002/ctpp.2150350308

P.N. Deka, “Orthogonal interaction of Bernstein mode with ion-acoustic wave through plasma maser effect,” Pramana, 50, 345 354 (1998). https://doi.org/10.1007/BF02845556

M. Singh, and P.N. Deka, Pramana, 66, 547 (2006). https://doi.org/10.1007/BF02704498

M. Singh, and P.N. Deka, “Plasma-maser effect in inhomogeneous plasma in the presence of drift wave turbulence,” Physics of plasmas, 12(10), 102304 (2005). https://doi.org/10.1063/1.2087587

R.N. Khound, S.N. Sarma, and S. Bujarbarua, “Plasma maser theory of ordinary mode radiation,” Indian Journal of Radio and Space Physics, 18, 90-94 (1989). https://nopr.niscpr.res.in/handle/123456789/36391

J. D. Huba, G. Joyce, and J.A. Fedder, Ion sound waves in the topside low latitude ionosphere. Geophysical research letters, 27(19), 3181-3184 (2000). https://doi.org/10.1029/2000GL003808

S.J. Gogoi, P.N. Deka, “Estimation of Growth Rate of Electromagnetic Plasma Wave through Vlasov-Maxwell Mathematical Frame in Ionospheric Plasma,” Physical Science International Journal, 23(3), 1-10 (2019). https://doi.org/10.9734/psij/2019/v23i330155

J. Zielinski, A.I. Smolyakov, P. Beyer, and S. Benkadda, Electromagnetic electron temperature gradient driven instability in toroidal plasmas. Physics of Plasmas, 24(2), 024501 (2017). https://doi.org/10.1063/1.4975189

P. Senapati, and P.N. Deka, “Instability of Electron Bernstein Mode in Presence of Drift Wave Turbulence Associated with Density and Temperature Gradients,” Journal of Fusion Energy, 39(6), 477-490 (2020). https://doi.org/10.1007/s10894-020-00269-y

V. Tangri, R. Singh, and P. Kaw, “Effects of impurity seeding and charge non-neutrality on electromagnetic electron temperature gradient modes in a tokamak,” Physics of plasmas, 12(7), 072506 (2005). https://doi.org/10.1063/1.1938975

H. Du, H. Jhang, T.S. Hahm, J.Q. Dong, and Z.X. Wang, Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles. Physics of Plasmas, 24(12), 122501 (2017). https://doi.org/10.1063/1.5000125

H. Du, Z.X. Wang, J.Q. Dong, and S.F. Liu, “Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas,” Physics of Plasmas, 21(5), 052101 (2014). https://doi.org/10.1063/1.4875342

A. Hirose, and M. Elia, “Electron temperature gradient driven skin size drift mode in tokamaks,” Plasma physics and controlled fusion, 45(1), L1 (2002). https://doi.org/10.1088/0741-3335/45/1/101

J.J. Podesta, and S.P. Gary, “Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field,” The Astrophysical Journal, 734(1), 15 (2011). https://doi.org/10.1088/0004-637X/734/1/15

S. Ichimaru, Statistical plasma physics: basic principles, (CRC Press, 2018).

N.F. Blagovecshchenskaya, T.D. Borisova, A.S. Kalishin, V.N. Kayatkin, T.K. Yeoman, and I. Haggstron, “Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F region,” Cosmic Research, 56(1), 11-25 (2018). https://doi.org/10.1134/S0010952518010045

S.P. Gary, Theory of space plasma microinstabilities, no. 7, (Cambridge university press, 1993).

A.B. Mikhailovskii, “Oscillations of an Inhomogeneous Plasma,” In: Leontovich, M.A. editors, Reviews of Plasma Physics, (Springer, Boston, MA, 1967). https://doi.org/10.1007/978-1-4615-7799-7_2

P.N. Deka, Ph.D. Thesis, Guwahati University, Assam, India, 1999.

Published
2023-09-04
Cited
How to Cite
Saikia, B., & Deka, P. (2023). Generation of O-Mode in the Presence of Ion-Cyclotron Drift Wave Turbulence in a Nonuniform Plasma. East European Journal of Physics, (3), 122-132. https://doi.org/10.26565/2312-4334-2023-3-09