Optical and Magnetic Response of Pure and CU-Ions Substituted Dysprosium Oxide Thin Films for Various Applications
Abstract
Dysprosium oxide (Dy2O3) and Cu/Dy2O3 thin films of thickness 117.14 nm and 258.30 nm, respectively were successfully deposited via a well-known DC-magnetron sputtering technique. Field emission scanning electron microscopy clarifies the growth of uniform and fine granular particles on silicon substrate. The hexagonal closed pack structure for both the thin films has been observed by the x-ray diffraction analysis and it was observed that by inclusion of copper the HCP structure of thin film was retain with a slight shift in the main peak. The reduction from 3.9 eV to 3.8 eV in the energy band gap value was observed by incorporation of copper ions Dy2O3 thin films. The M-H loops obtained through Vibrating Sample Magnetometer (VSM) shows that Dy2O3 thin film behave ferromagnetically at low temperature with a saturation magnetization value of 2860 emu/cc and evolves through its phase transition temperatures and behave paramagnetically at room temperature. In Cu/Dy2O3 case, the diamagnetic response of Cu dominates and produces reverse hysteresis loop at both temperatures make it a suitable candidate for energy and memory storage devices applications.
Downloads
References
F. Schatz, M. Hirscher, G. Flik, and H. Kronmüller, Physica Status Solidi, 137(1), 197 (1993). https://doi.org/10.1002/pssa.2211370117
G. Flik, M. Schnell, F. Schatz, and M.B. Hirscher, in: Proc. Actuator 94, (Bremen, Germany, 1994), p. 232.
J.Y. Kim, J. Appl. Phys. 74, 2701 (1993). https://doi.org/10.1063/1.354664
R. Jain, V. Luthra, and S. Gokhale, J. Mag. and Mag. Mater. 456, 179 (2018). https://doi.org/10.1016/j.jmmm.2018.02.029
H. Fernández-Morán, Physics, 53, 445 (1965). https://doi.org/10.1073/pnas.53.2.445
A. Paulson, N.M. Sabeer, and P.P. Pradyumnan, Mater. Sci. & Engi. B, 262, 114745 (2020). https://doi.org/10.1016/j.mseb.2020.114745
A. Bulatov, S. Goridov, M. Tikhonovskij, and S. Novikov, IEEE Trans. Mag. 28, 509 (1992). https://doi.org/10.1109/20.119923
R. Agustsson, P. Frigola, A. Murokh, O. Chubar, and V. Solovyov, in: Proceedings of 2011 Particle Accelerator Conference, (New York, USA, 2011). pp. 1256-1258.
R. Agustsson, P. Frigola, A. Murokh, and V. Solovyov, in: Proceedings of PAC09, (Vancouver, Canada, 2009), WE5RFP077.
Z.S. Shan, and D.J. Sellmyer, J. Appl. Phys. 64, 5745 (1988). https://doi.org/10.1063/1.342245
N.D. Subramanian, J. Moreno, J.J. Spivey, and C.S. Kumar, J. Phys. Chem. C, 115, 14500 (2011). https://doi.org/10.1021/jp202215k
Z.S. Shan, S. Nafis, K.D. Aylesworth, and D.J. Sellmyer, J. Appl. Phys. 63, 3218 (1988).
A.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, M.A. Almessiere, Y. Slimani, A. Baykal, A.S.B. Sombra, et al., J. Alloys Compounds, 841, 155667 (2020). https://doi.org/10.1016/j.jallcom.2020.155667
K. Dumesnil, C. Dufour, P. Mangin, G. Marchal, and H. Hennion, Phys. Rev. B, 54, 6407 (1996). https://doi.org/10.1103/PhysRevB.54.6407
K. Dumesnil, C. Dufour, P. Mangin, G. Marchal, and H. Hennion, Europhys. Let. 31(1), 43 (1995). https://doi.org/10.1209/0295-5075/31/1/008
M. Elisa, R. Stefan, I.C. Vasiliu, M.I. Rusu, B.A. Sava, L. Boroica, M. Sofronie, et al., J. Non-cryst. Solids, 521, 119545 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119545
A.M. Henaish, O.M. Hemeda, E.A. Arrasheed, R.M. Shalaby, A.R. Ghazy, I.A. Weinstein, M.A. Darwish, et al., J. Compos. Sci. 7, 61 (2023). https://doi.org/10.3390/jcs7020061
G. Ganesh, A. Sandeep, G. Chanti, R.S. Bose, M.S. Kumar, K.P. Kumari, T. Shekharam, et al., Phys. Stat. solidi (a), 220(9), 2200864 (2023). https://doi.org/10.1002/pssa.202200864
G. Hussain, I. Ahmed, A.U. Rehman, M.U. Subhani, N. Morley, M. Akhtar, M.I. Arshad and H. Anwar, J. Alloys & Comp. 919, 165743 (2022). https://doi.org/10.1016/j.jallcom.2022.165743
T.H. Wu, J.C. Wu, B.M. Chen, and H.P.D. Shieh, J. Mag. Mag. Mater. 202, 62 (1999). https://doi.org/10.1016/S0304-8853(99)00140-7
S. Sugimoto, J. Phys. D: Appl. Phys. 44, 064001 (2011). https://doi.org/10.1088/0022-3727/44/6/064001
C.V. Mohan, and H. Kronmüller, J. Alloys Compounds, 267, L9 (1998). https://doi.org/10.1016/S0925-8388(97)00524-0
A.M. Tishin, and Y.I. Spichkin, The Magnetocaloric Effect and its Applications, (IOP Publishing Ltd., London, 2003).
S. Zhang, K. Hongshan, S. Lin, L. Xin, S. Quan, X. Gang, W. Qing, et al., Inorganic Chemistry, 55, 3865 (2016). https://doi.org/10.1021/acs.inorgchem.5b02971
V.P. Piskorskii, G.S. Burkhanov, O.G. Ospennikova, R.A. Valeev, I.S. Tereshina, and E.A. Davydova, Russian Metallurgy, 5, 442 (2010). https://doi.org/10.1134/S0036029510050150
Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, et al., Alloys & Comp. 797, 834 (2019). https://doi.org/10.1016/j.jallcom.2019.05.043
J. Kar, S. Kim, B. Shin, and J. Myong, Solid-State Electronics, 54, 1447 (2010). https://doi.org/10.1016/j.sse.2010.07.002
S. Horoz, S. Simsek, S. Palaz, A.M. Mamedov, E. Ozbay, International Journal of Scientific and Technological Research, 1, 36 (2015). https://www.iiste.org/Journals/index.php/JSTR/article/view/23009/23526
S.M. Ramay, A. Mahmood, H.M. Ghaithan, N.S. Al-Zayed, A. Aslam, A. Murtaza, N. Ahmad, et al., J. Rare Earths, 37, 989 (2019). https://doi.org/10.1016/j.jre.2018.12.002
P. Salunkhe, M.A.V. Ali, and D. Kekuda, Mater. Res. Exp. 7, 016427 (2020). https://doi.org/10.1088/2053-1591/ab69c5
P.S. Shewale, V.B. Patil, S.W. Shin, J.H. Kim, and M.D. Uplane, Sens. Actuators B: Chem. 186, 226 (2013). https://doi.org/10.1016/j.snb.2013.05.073
X.B. Wang, D.M. Li, F. Zeng, and F. Pan, J. Phys. D: Appl. Phys. 38, 4104 (2005). https://doi.org/10.1088/0022-3727/38/22/014
H. Gonga, J.Q. Hua, J.H. Wang, C.H. Onga, F.R. Zhub, Sens. Actuators B: Chem. 115, 247 (2006). https://doi.org/10.1016/j.snb.2005.09.008
F.Y. Lo, Y.C. Ting, K.C. Chou, T.C. Hsieh, C.W. Ye, Y.Y. Hsu, M.Y. Chern, and H.L. Liu, J. Appl. Phys. 117, 213911 (2015). https://doi.org/10.1063/1.4921979
S.E. Harrison, L.J. Collins-McIntyre, S.L. Zhang, A.A. Baker, A.I. Figueroa, A.J. Kellock, A. Pushp, J. Phys. Condens. Matter. 27, 245602 (2015). https://doi.org/10.1088/0953-8984/27/24/245602
K. Niira, Phys. Rev. 117, 129 (1960). https://doi.org/10.1103/PhysRev.117.129
M. Morishita, T. Abe, H. Yamamoto, A. Nozaki, and S. Kimura, Thermoch. Act, 721, 179410 (2023). https://doi.org/10.1016/j.tca.2022.179410
L.I. Naumova, M.A. Milyaev, R.S. Zavornitsyn, T.P. Krinitsina, V.V. Proglyado, and V.V. Ustinov, Curr. Appl. Phys. 19, 1252 (2019). https://doi.org/10.1016/j.cap.2019.08.012
K.P. Belov, R.Z. Levitin, and S.A. Nikitin, Soviet Physics Uspekhi, 7, 179 (1964). https://doi.org/10.1070/PU1964v007n02ABEH003660
Copyright (c) 2023 Muhammad Tauseef Qureshi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).