Isoscalar Giant Octupole Resonance ISGOR of 116Cd using Self-Consistent Skyrme QRPA
Abstract
Collective models based on the random phase approximation (RPA) are widely used to accurately depict collective modes of response. They can quickly calculate the strength function for the entire nuclear mass range. The quasi-particle random phase approximation (QRPA), which considers the pairing effect, is an enhanced RPA model. It is anticipated that this effect will be significant for open-shell nuclei. In this work, the self-consistent Skyrme Hartree-Fock-Bardeen, Cooper, and Schrieffer (HF-BCS) and QRPA models have been used to study the isoscalar giant octupole resonance (ISGOR) in the 116Cd isotope. Ten Skyrme-type parameters are utilized in the computations since they may be identified by different values of the incompressibility modulus KMN in nuclear matter. The calculated strength distributions and centroid energy are compared with available experimental data. We saw that the strength distributions varied depending on the type of Skyrme-interaction, and we also observed a definite impact of the KNM values on the centroid energy.
Downloads
References
J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, and J. Dechargé, “Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects”, Physical Review C, 53, 2809 (1996). https://doi.org/10.1103/PhysRevC.53.2809
M. Baranger, “Extension of the shell model for heavy spherical nuclei”, Phys. Rev. 120, 957 (1960). https://doi.org/10.1103/PhysRev.120.957
V. Voronov, “Complex configurations and nuclear structure problems”, J. Phys.: Conf. Ser. 1555, 012002 (2020). https://doi.org/110.1088/1742-6596/1555/1/012002
M. N. Harakeh, and A. van der Woude, Giant Resonances, Oxford Studies on Nuclear Physics, (Oxford Science Publications, 2001).
S. Shlomo, G. Bonasera, and M.R. Anders, “Giant resonances in 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm and 208Pb and properties of nuclear matter,” AIP Conference Proceedings, 2150, 030011 (2019). https://doi.org/10.1063/1.5124600
J. Button, Y.-W. Lui, D.H. Youngblood, X. Chen, G. Bonasera, and S. Shlomo, “Isoscalar E0, E1, E2, and E3 strength in 94Mo”, Phys. Rev. C, 94, 034315 (2016). https://doi.org/10.1103/PhysRevC.94.034315
Krishichayan, Y.-W. Lui, J. Button, D.H. Youngblood, G. Bonasera, and S. Shlomo, “Isoscalar Giant Resonances in 90, 92, 94Zr,” Phys. Rev. C, 92, 044323 (2015). https://doi.org/10.1103/PhysRevC.92.044323
J. D. Vergados, H. Ejiri, and F. Simkovic, “Theory of neutrinoless double-beta decay”, Rep. Prog. Phys. 75, 106301 (2012). https://doi.org/10.1088/0034-4885/75/10/106301
J. Barea, J. Kotila, F. Iachello, “Limits on Neutrino Masses from Neutrinoless Double-Β Decay”, Phys. Rev. Lett. 109, 042501 (2012). https://doi.org/10.1103/PhysRevLett.109.042501
S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, et al., “Double-beta decay Q values of 116Cd and 130Te”, Phys. Lett. B, 703, 412 (2011). https://doi.org/10.1016/j.physletb.2011.07.078
M. Berglund, and M.E. Wieser, “Isotopic compositions of the elements 2009”, Pure Appl. Chem. 83, 397 (2011). https://doi.org/10.1351/PAC-REP-10-06-02
B.A. Brown, “New Skyrme interaction for normal and exotic nuclei”, Phys. Rev. C 58, 220 (1998).
Z. Zhang, and L.W. Chen, “Extended Skyrme interactions for nuclear matter, finite nuclei and neutron stars”, Phys. Rev. C, 94, 064326 (2016). https://doi.org/10.1103/PhysRevC.94.064326
L.W. Chen, C.M. Ko, B.A. Li, and J. Xu, “Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei,” Phys. Rev. C, 82, 024321 (2010). https://doi.org/10.1103/PhysRevC.82.024321
L.G. Cao, G. Colò, H. Sagawa, P.F. Bortignon, and L. Sciacchitano, “Effects of the Tensor Force on the Multipole Response in Finite Nuclei”, Phys. Rev. C, 80, 064304 (2009). https://doi.org/10.1103/PhysRevC.80.064304
M. Samyn, S. Goriely, P.H. Heenen, and J.M. Pearson, “A Hartree-Fock-Bogoliubov mass formula”, Nucl. Phys. A, 700, 142 (2002). https://doi.org/10.1016/S0375-9474(01)01316-1
Q. Shen, Y. Han, and H. Guo, “Isospin dependent nucleon-nucleus optical potential with Skyrme interactions”, Phys. Rev. C, 80, 024604 (2009). https://doi.org/10.1103/PhysRevC.80.024604
M. Beiner, H. Flocard, N.V. Giai, and P. Quentin, “Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description”, Nucl. Phys. A, 238, 29 (1975). https://doi.org/10.1016/0375-9474(75)90338-3
P.A.M. Guichon, and A.W. Thomas, “Quark Structure and Nuclear Effective Forces”, Phys. Rev. Lett. 93, 13 (2004). https://doi.org/10.1103/PhysRevLett.93.132502
D. Vautherin, and D. M. Brink, “Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei”, Phys. Rev. C, 5, 626 (1972). https://doi.org/10.1103/PhysRevC.5.626
J.P. Blaizot, “Nuclear compressibilities”, Phys. Rep. 64(4), 171 (1980). https://doi.org/10.1016/0370-1573(80)90001-0
S. Shlomo, V.M. Kolomietz, and G. Colò, “Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes”, Eur. Phys. J. A, 30, 23 (2006). https://doi.org/10.1140/epja/i2006-10100-3
A. Bohr, and B.R. Mottelson, Nuclear Structure, Vol. 2, (W.A. Benjamin, New York, 1975).
A.H. Taqi, and G.L. Alawi, “Isoscalar giant resonance in 100,116,132Sn isotopes using Skyrme HF-RPA,” Nucl, Phys. A, 983, 103 117 (2019). https://doi.org/10.1016/j.nuclphysa.2019.01.001
A. H. Taqi, and E.G. Khider, “Ground and transition properties of 40Ca and 48Ca nuclei,” Nucl. Phys. At. Energy, 19, 326 (2018). https://doi.org/10.15407/jnpae2018.04.326
S.H. Amin, A.A. Al-Rubaiee, and A.H. Taqi, “Effect of Incompressibility and Symmetry Energy Density on Charge Distribution and Radii of Closed-Shell Nuclei”, Kirkuk U. J. Sci. Stud. 17(3), 17(2022).10.32894/kujss.2022.135889.1073
M. Dutta, O. Lourenco, J.S.Sá. Martins, A. Delfino, J.R. stone, and P.D. Stevenson, “Skyrme interaction and nuclear matter constraints”, Phys. Rev. C, 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201
P.D. Stevenson, P.D. Goddard, J.R. Stone, and M. Dutta, “Do Skyrme forces that fit nuclear matter work well in finite nuclei,” AIP Conference Proceedings, 1529, 262 (2013). https://doi.org/10.1063/1.4807465
J.M. Moss, D.H. Youngblood, C.M. Rozsa, D.R. Brown, and J.D. Bronson, “Observation of a Low-Energy Octupole Resonance in Medium-Mass Nuclei”, Phys. Rev. Lett. 37, 816 (1976). https://doi.org/10.1103/PhysRevLett.37.816
Y.-W. Lui, D.H. Youngblood, Y. Tokimoto, H.L. Clark, and B. John, “Isoscalar multipole strength in 110Cd and 116Cd”, Phys. Rev. C, 69, 034611 (2004). https://doi.org/10.1103/PhysRevC.69.034611
J. Li, G. Colò, and J. Meng, “Microscopic linear response calculations based on the Skyrme functional plus the pairing contribution”, Phys. Rev. C, 78, 064304 (2008). https://doi.org/10.1103/PhysRevC.78.064304
Copyright (c) 2023 Maryam A. Akbar, Ali H. Taqi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).