The Electronic and Thermodynamic Properties of Ternary Rare Earth Metal Alloys

  • Aman Kumar Department of Physics, Keral Verma Subharti College of Science, Swami Vivekanand Subharti University Meerut, Uttar Pradesh, India https://orcid.org/0000-0002-8867-6595
  • Anuj Kumar Department of Physics, Mahamaya Government Degree College, Sherkot, Bijnore, Uttar Pradesh, India https://orcid.org/0000-0003-3372-3718
  • Kamal Kumar Department of Physics, D.A.V College Kanpur, Uttar Pradesh, India https://orcid.org/0000-0001-8132-5373
  • Rishi Pal Singh Department of Physics, S. S. V. College, Hapur, Uttar Pradesh, India
  • Ritu Singh Department of Chemistry, S. S. V. College, Hapur, Uttar Pradesh, India
  • Rajesh Kumar Department of Physics, Government Degree College, Nanauta, Saharanpur, UP, India
Keywords: electronic, intermetallic, density of state, DFT

Abstract

This article uses the FP-LAPW approach within the DFT method, and the quasi-harmonic Debye model to investigate the electronic and thermodynamic properties of intermetallic rare earth materials (such as SmInZn, SmInCd, and SmTlZn). Thermodynamic properties were determined by the quasi-harmonic Debye model, whereas the FP-LAPW approaches within DFT method were utilized to derive electronic properties. The calculated structural parameters and the available experimental data have been examined, and it was observed that there was a good agreement between available experimental and calculated values of structural parameters. The electronic behavior of SmInZn, SmInCd and SmTlZn compounds shows the metallic character. We have examined a few thermodynamic characteristics. All calculated characteristics were found to match experimental or theoretical calculations.

Downloads

Download data is not yet available.

References

R.D. Hoffmann, and R. Pöttgen, Z. Kristallogr. 216, 127 (2001).

M.D. Klicpera, F. Malý, I. Puente-Orench, and P. Javorský, J. Alloys Compd. 822, 153595 (2020). https://doi.org/10.1016/j.jallcom.2019.153595

Mishra, U. Subbarao, S. Roy, S.C. Sarma, D. Mumaddi, S. Sarkar, and S.C. Peter, Inorg. Chem. 57, 12576 (2018). https://doi.org/10.1021/acs.inorgchem.8b01650

K. Sun, H. Yao, E. Fradkin, and S.A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009). https://doi.org/10.1103/PhysRevLett.103.046811

L. Bessais, “Structure and Magnetic Properties of Intermetallic Rare-Earth-Transition-Metal Compounds: A Review”, Materials, 15, 201 (2022). https://doi.org/10.3390/ma15010201

E. Burzo, “Exchange Interactions and Transition Metal Moments in Rare-Earth Compounds”, J. Synchrotron Investig. 12, 431 (2018). https://doi.org/10.1134/S1027451018030072

M. Duchna, and I. Cieślik, “Rare Earth Elements in New Advanced Engineering Applications”, Rare Earth Elements - Emerging Advances, Technology Utilization, and Resource Procurement, (2022). https://doi.org/10.5772/intechopen.109248

M. Traore, A. Gong, Y. Wang, L. Qiu, Y. Bai, W. Zhao, Y. Liu, et al., “Research progress of rare earth separation methods and technologies”, Journal of Rare Earths, (2022). https://doi.org/10.1016/j.jre.2022.04.009

A. Fert, F.N. Van Dau, Comptes Rendus Physique, 20(7-8), 817 (2019). https://doi.org/10.1016/j.crhy.2019.05.020

V. Balaram, “Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact”, Geoscience Frontiers, 10(4), 1285 (2019). https://doi.org/10.1016/j.gsf.2018.12.005

G. Barakos, H. Mischo, and J. Gutzmer, A forward look into the US rare-earth industry; How potential mines can connect to the global REE market?, Mining Engineering, (2018), pp. 30-37. https://thoriumenergyalliance.com/wp-content/uploads/2020/02/REE-GeorgeNabeelhighlights.pdf

W. Gwenzi, L. Mangori, C. Danha, N. Chaukura, N. Dunjana, and E. Sanganyado, “Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants”, The Science of the Total Environment, 636, 299-313, (2018). https://doi.org/10.1016/j.scitotenv.2018.04.235

J. Kang, and A.M. Kang, “Trend of the research on rare earth elements in environmental science”, Environ. Sci. Pollut. Res. 27, 14318 (2020). https://doi.org/10.1007/s11356-020-08138-z

M.Y. Raïâ, R. Masrour, A. Jabar, M. Hamedoun, A. Rezzouk, A. Hourmatallah, N. Benzakour, et al., Journal of Physics and Chemistry of Solids, 163, 110581 (2022). https://doi.org/10.1016/j.jpcs.2022.110581

M. Jirsa, M. Rameš, and M. Muralidhar, Acta Phys. Pol. A, 113, 223 (2008). http://przyrbwn.icm.edu.pl/APP/PDF/113/a113z1054.pdf

D.J. Garcı́a, V. Vildosola, and P. Cornaglia, Condensed Matter, 32(28), 285803 (2019). https://doi.org/10.1088/1361-648X/ab7e5a

X.B. Liu, and Z. Altounian, “First-principles calculation on the Curie temperature of GdFeSi”, J. Appl. Phys. 107, 09E103 (2010). https://doi.org/10.1063/1.3364048

S. Talakesh, and Z. Nourbakhsh, “The density functional study of structural, electronic, magnetic and Thermodynamic properties of XFeSi (X=Gd, Tb, La) and GdRuSi compounds”, J. Supercond. Novel Magn. 30, 2143 (2017). https://doi.org/10.1007/s10948-017-3976-x

V.K. Pecharsky, and K.A. Gschneidner Jr, “Magnetocaloric effect and magnetic refrigeration”, J. Magn. Magn. Mater. 44-56, 200 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

J. Du, Q. Zheng, Y. Li, Q. Zhang, D. Li, and Z. Zhang, “Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses”, J. Appl. Phys. 103, 023918 (2008). https://doi.org/10.1063/1.2836956

V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

A. Mahmood, M. Rashid, K. Safder, M.W. Iqbal, N.A. Noor, S.M. Ramay, W. Al-Masry, et al., Results in Physics, 20, 103709 (2021). https://doi.org/10.1016/j.rinp.2020.103709

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicka, and J. Luitz, WIEN2k An Augmented Plane Wave-Local Orbitals Program for Calculating Crystal Properties, (K. Schwarz Technical Universitat, Wien Austria, 2001). ISBN: 3-9501031 1-2

D.J. Singh, and L. Nordstrom, Plane Waves Pseudo Potentials and the LAPW Method, (Springer, New York, 2006).

K. Schwarz, “DFT calculations of solids with LAPW and WIEN2k”, J. Solid State Chemistry, 176, 319 (2003). https://doi.org/10.1016/S0022-4596(03)00213-5

A. Otero-de-la-Roza, and, D. Abbasi-Pérez, and V. Luaña, “GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features, and implementation”, Computer Physics Communications, 182. 2232 (2011). https://doi.org/10.1016/j.cpc.2011.05.009

W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties, (Vienna University of Technology, Vienna, 2001).

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1994). https://doi.org/10.1073%2Fpnas.30.9.244

K. Hartjes, and W. Jeitschko, J. Alloys Compd. 226, 81 (1995). https://doi.org/10.1016/0925-8388(95)01573-6

Published
2023-03-02
Cited
How to Cite
Kumar, A., Kumar, A., Kumar, K., Singh, R. P., Singh, R., & Kumar, R. (2023). The Electronic and Thermodynamic Properties of Ternary Rare Earth Metal Alloys. East European Journal of Physics, (1), 109-117. https://doi.org/10.26565/2312-4334-2023-1-13