Plasmon-Exciton Interaction in Perspective Hetero-Systems
Abstract
Surface plasmons and excitons have been widely studied experimentally and theoretically for various material systems. However, a number of aspects require further deeper study and understanding, among which the connection of these quasi-particles occupies an important place. New physical effects arise when plasmons and excitons in nanostructures begin to be localized at certain small distances, as a result, we can talk about their coupling. Complex systems containing the excitation of plasmons and excitons, as well as their coupling, show interesting optical properties that they cannot exhibit individually. In this type of system, the plasmon enhances the coupling between the system and the external field, and the exciton controls certain spectral properties, which opens up new possibilities for tuning their optical response. The transferred energy between plasmons and excitons becomes an important factor affecting their interaction when the resonance frequency of the localized plasmon is very close to the molecular energy transition frequency. Two types of coupling can occur depending on the ratio between the strength of the coupling and the energy losses of individual components in the system, namely strong and weak. In addition to the mutual coupling between the plasmon and the exciton, their different linewidths and ability to couple to an external field provide a variety of means to tune the optical properties of hybrid systems. Thus, it enables precise control of light at the nanometer scale, opening up possibilities for new electronics and photonics applications. In this review, we highlight the features of weak and strong modes of plasmon-exciton coupling, modern trends, and perspectives in the study of hetero-systems semiconductor–metal, metal–2D material, semiconductor–molecule, etc. Semiconductor-metal hybrid nanostructures open up exciting opportunities for the study of quantum phenomena, optical processes, and multiparticle interactions and confidently lead to application in new photonics devices.
Downloads
References
J.W. Haus, editor, Fundamentals and applications of nanophotonics, (Woodhead Publishing, 2016).
F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics”, Nature Photonics, 8(12), 899-907 (2014). https://doi.org/10.1038/nphoton.2014.271
R.B. Schasfoort, editor, Handbook of surface plasmon resonance, (CPI Group Ltd., Royal Society of Chemistry, 2017).
G.D. Scholes, and G. Rumbles, Excitons in nanoscale systems, in: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, (Nature Publishing Group, UK, 2011). pp. 12-25.
M. Pelton, and G.W. Bryant, Introduction to metal-nanoparticle plasmonics, (John Wiley & Sons, 2013).
Y. Chu, and K.B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons”, Optics letters, 34(3), 244-246 (2009). https://doi.org/10.1364/OL.34.000244
S.A. Maier, Plasmonics: fundamentals and applications, Vol. 1, (Springer, New York, 2007), pp. 245.
C.L. Haynes, and R.P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy”, The Journal of Physical Chemistry B, 107(30), 7426 (2003). https://doi.org/10.1021/jp027749b
J.M. Pitarke, V.M. Silkin, E.V. Chulkov, and P.M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons”, Reports on progress in physics, 70(1), 1 (2006). https://doi.org/10.1088/0034-4885/70/1/R01
J.M. Brockman, B.P. Nelson, and R.M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films”, Annual review of physical chemistry, 51(1), 41 (2000). https://doi.org/10.1146/annurev.physchem.51.1.41
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical review letters, 58(20), 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
H. Shi, and M.H. Du, “Discrete electronic bands in semiconductors and insulators: Potential high-light-yield scintillators”, Physical Review Applied, 3(5), 054005 (2015). https://doi.org/10.1103/PhysRevApplied.3.054005
V.I. Klimov, editor, Nanocrystal quantum dots, (CRC press. 2017).
M.J. Kelly, Low-dimensional semiconductors: materials, physics, technology, devices, Vol. 3, (Clarendon Press, 1995).
A.P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots”, Science, 271(5251), 933-937 (1996). https://www.science.org/doi/10.1126/science.271.5251.933
M.A. Green, “Improved value for the silicon free exciton binding energy”, Aip Advances, 3(11), 112104 (2013). https://doi.org/10.1063/1.4828730
M. Li, S.K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review”, Analyst, 140(2), 386-406 (2015). https://doi.org/10.1039/C4AN01079E
E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications”, Nanophotonics, 7(1), 145-167 (2018). https://doi.org/10.1515/nanoph-2017-0059
N. Kholmicheva, L.R. Romero, J. Cassidy, and M. Zamkov, “Prospects and applications of plasmon-exciton interactions in the near-field regime”, Nanophotonics, 8(4), 613-628 (2019). https://doi.org/10.1515/nanoph-2018-0143
D.E. Gхomez, K.C. Vernon, P. Mulvaney, and T.J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals”, Nanoletters.10 (1), 274-278 (2010). https://doi.org/10.1021/nl903455z
X. Li, L. Zhou, Z. Hao, and Q.Q. Wang, “Plasmon–exciton coupling in complex systems”, Advanced Optical Materials, 6(18), 1800275 (2018). https://doi.org/10.1002/adom.201800275
Y. Sugawara, T.A. Kelf, J.J. Baumberg, M.E. Abdelsalam, and P.N. Bartlett “Strong coupling between localized plasmons and organic excitons in metal nanovoids”, Physical review letters, 97(26), 266808 (2006). https://doi.org/10.1103/PhysRevLett.97.266808
S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna”, ACS nano, 4(11), 6369-6376 (2010). https://doi.org/10.1021/nn100585h
R.D. Artuso, and G.W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects”, Physical Review B, 82(19), 195419 (2010). https://doi.org/10.1103/PhysRevB.82.195419
G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates”, Scientific reports, 3(1), 1-8 (2013). https://doi.org/10.1038/srep03074
N.T. Fofang, T.H. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexcitonic nanoparticles: plasmon− exciton coupling in nanoshell− J-aggregate complexes”, Nano letters, 8(10), 3481-3487 (2008). https://doi.org/10.1021/nl8024278
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system”, Nature, 445(7130), 896-899 (2007). https://doi.org/10.1038/nature05586
H. Wei, D. Ratchford, X. Li, H. Xu, and C.K. Shih, “Propagating surface plasmon induced photon emission from quantum dots”, Nano letters, 9(12), 4168-4171 (2009). https://doi.org/10.1021/nl9023897
E. Eizner, and T. Ellenbogen, “Ultrafast all-optical switching based on strong coupling between excitons and localized surface plasmons”, In CLEO: QELS_Fundamental Science, Optical Society of America, (FTh4B-6, 2016, June). https://doi.org/10.1364/CLEO_QELS.2016.FTh4B.6
J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, and H.J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling”, Nature, 425(6955), 268-271 (2003). https://doi.org/10.1038/nature01974
K.H. Drexhage, “IV interaction of light with monomolecular dye layers”, In Progress in optics, Elsevier, 12, 163-232 (1974). https://doi.org/10.1016/S0079-6638(08)70266-X
K.Y. Yang, K.C. Choi, and C.W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application”, Applied Physics Letters, 94(17), 121 (2009). https://doi.org/10.1063/1.3125249
S. Balci, E. Karademir, C. Kocabas, A. Aydinli, “Absorption enhancement of molecules in the weak plasmon–exciton coupling regime”, Optics Letters, 39(17), 4994-4997 (2014). https://doi.org/10.1364/OL.39.004994
D. Zhao, R.E. Silva, C. Climent, J. Feist, A.I. Fernández-Domínguez, and F.J. García-Vidal, “Impact of vibrational modes in the plasmonic Purcell effect of organic molecules”, ACS photonics, 7(12), 3369-3375 (2020). https://doi.org/10.1021/acsphotonics.0c01095
P. Törmä, and W.L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review”, Reports on Progress in Physics, 78(1), 013901 (2014). https://doi.org/10.1088/0034-4885/78/1/013901
P. Vasa, and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures”, Acs Photonics, 5(1), 2-23 (2018). https://doi.org/10.1021/acsphotonics.7b00650
P. Vasa, “Exciton-surface plasmon polariton interactions”, Advances in Physics: X, 5(1), 1749884 (2020). https://doi.org/10.1080/23746149.2020.1749884
W.A. Murray, and W.L. Barnes, “Plasmonic materials”, Advanced materials, 19(22), 3771-3782 (2007). https://doi.org/10.1002/adma.200700678
V. Fitio, I. Yaremchuk, O. Vernyhor, and Y. Bobitski, “Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate”. Applied Nanoscience, 8(5), 1015-1024 (2018). https://doi.org/10.1007/s13204-018-0686-z
V. Fitio, I. Yaremchuk, O. Vernyhor, and Y. Bobitski, “Resonance of surface-localized plasmons in a system of periodically arranged copper and aluminum nanowires on a dielectric substrate”, Applied Nanoscience, 10(8), 2609-2616 (2020). https://doi.org/10.1007/s13204-019-01065-7
M.C. Beard, “Multiple exciton generation in semiconductor quantum dots”, The Journal of Physical Chemistry Letters, 2(11), 1282-1288 (2011). https://doi.org/10.1021/jz200166y
D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2”, Nano letters, 17(6), 3809-3814 (2017). https://doi.org/10.1021/acs.nanolett.7b01176
N.T. Fofang, T.H. Park, O. Neumann, N.A. Mirin, P. Nordlander, and N.J. Halas, “Plexcitonic nanoparticles: plasmon− exciton coupling in nanoshell− J-aggregate complexes”, Nano letters, 8(10), 3481-3487 (2008). https://doi.org/10.1021/nl8024278
A.M. Glass, P.F. Liao, J.G. Bergman, and D.H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence”, Optics Letters, 5(9), 368-370 (1980). https://doi.org/10.1364/OL.5.000368
M. Pelton, M. Sheldon, and J. Khurgin, “Plasmon-exciton coupling”, Nanophotonics, 8(4), 513-516 (2019). https://doi.org/10.1515/nanoph-2019-0065
C. Bonnand, J. Bellessa, and J.C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface”, Physical Review B, 73(24), 245330 (2006). https://doi.org/10.1103/PhysRevB.73.245330
J. Bellessa, C. Symonds, C. Meynaud, J.C. Plenet, E. Cambril, A. Miard, and A. Lemaître, “Exciton/plasmon polaritons in GaAs/Al 0.93 Ga 0.07 As heterostructures near a metallic layer”, Physical Review B, 78(20), 205326 (2008). https://doi.org/10.1103/PhysRevB.78.205326
A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna”, Science, 329(5994), 930-933 (2010). https://www.science.org/doi/10.1126/science.1191922
J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N.A. Kotov, “Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection”, Nature materials, 6(4), 291-295 (2007). https://doi.org/10.1038/nmat1869
G.A. Jones, and D.S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications”, Frontiers in Physics, 7, 100 (2019). https://doi.org/10.3389/fphy.2019.00100
M.C. Dos Santos, W.R. Algar, I.L. Medintz, and N. Hildebrandt, “Quantum dots for Förster resonance energy transfer (FRET)”, TrAC Trends in Analytical Chemistry, 125, 115819 (2020). https://doi.org/10.1016/j.trac.2020.115819
I.L. Medintz, and N. Hildebrandt, editors, FRET-Forster Resonance Energy Transfer: From Theory to Applications, (John Wiley & Sons, 2013).
X. Guo, Y. Zhang, B. Fan, and J. Fan, “Quantum confinement effect in 6H-SiC quantum dots observed via plasmon–exciton coupling-induced defect-luminescence quenching”, Applied Physics Letters, 110(12), 123104 (2017). https://doi.org/10.1063/1.4978903
O. Svelto, and D.C. Hanna, Principles of lasers, (New York: Plenum press, 1998).
Y. Luo, and J. Zhao, “Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures”, Nano Research, 12(9), 2164-2171 (2019). https://doi.org/10.1007/s12274-019-2390-z
D.E. Gomez, K.C. Vernon, P. Mulvaney, and T.J. “Davis, Surface plasmon mediated strong exciton− photon coupling in semiconductor nanocrystals”, Nano letters, 10(1), 274-278 (2010). https://doi.org/10.1021/nl903455z
J. Jasieniak, L. Smith, J. Van Embden, P. Mulvaney, and M. Califano, “Re-examination of the size-dependent absorption properties of CdSe quantum dots”, The Journal of Physical Chemistry C, 113(45), 19468-19474 (2009). https://doi.org/10.1021/jp906827m
I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach”, Physical Chemistry Chemical Physics, 6(21), 5056-5060 (2004). https://doi.org/10.1039/B405157B
L.C. Andreani, G. Panzarini, and J.M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory”, Physical Review B, 60(19), 13276 (1999). https://doi.org/10.1103/PhysRevB.60.13276
C. Strelow, T. S. Theuerholz, C. Schmidtke, M. Richter, J.P. Merkl, H. Kloust, and H. Lange, “Metal–semiconductor nanoparticle hybrids formed by self-organization: A platform to address exciton–plasmon coupling”, Nano Letters, 16(8), 4811-4818 (2016). https://doi.org/10.1021/acs.nanolett.6b00982
E. Cohen-Hoshen, G.W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton–plasmon interactions in quantum dot–gold nanoparticle structures”, Nano letters, 12(8), 4260-4264 (2012). https://doi.org/10.1021/nl301917d
J. Aizpurua, G.W. Bryant, L.J. Richter, F.G. De Abajo, B.K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy”, Physical Review B, 71(23), 235420 (2005). https://doi.org/10.1103/PhysRevB.71.235420
B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties”, Materials Chemistry and Physics, 119(1-2), 237-242 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.054
S. Acharya, A.B. Panda, S. Efrima, and Y. Golan, “Polarization properties and switchable assembly of ultranarrow ZnSe nanorods”, Advanced Materials, 19(8), 1105-1108 (2007). https://doi.org/10.1002/adma.200602057
S. Foteinopoulou, J.P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures”, Optics Express, 15(7), 4253-4267 (2007). https://doi.org/10.1364/OE.15.004253
Y. Wang, T. Yang, M.T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures”, Physical review letters, 102(16), 163001 (2009). https://doi.org/10.1103/PhysRevLett.102.163001
J.H. Song, T. Atay, S. Shi, H. Urabe, and A.V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons”, Nano letters, 5(8), 1557-1561 (2005). https://ieeexplore.ieee.org/document/1548711
O. Bitton, S.N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling”, Nanophotonics, 8(4), 559-575 (2019). https://doi.org/10.1515/nanoph-2018-0218
J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, and H.J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling”, Nature, 425(6955), 268-271 (2003). https://doi.org/10.1038/nature01974
A.L. Rodarte, and A.R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers”, The Journal of Physical Chemistry C, 121(6), 3496-3502 (2017). https://doi.org/10.1021/acs.jpcc.6b08905
P. Törmä, and W.L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review”, Reports on Progress in Physics, 78(1), 013901 (2014). https://iopscience.iop.org/article/10.1088/0034-4885/78/1/013901
J. Dintinger, S. Klein, F. Bustos, W.L. Barnes, and T.W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays”, Physical Review B, 71(3), 035424 (2005). https://doi.org/10.1103/PhysRevB.71.035424
J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor”, Physical Review B, 80(3), 033303 (2009). https://doi.org/10.1103/PhysRevB.80.033303
G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions”, Physical review letters, 114(15), 157401 (2015). https://doi.org/10.1103/PhysRevLett.114.157401
M. Wersall, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons”, Nano letters, 17(1), 551-558 (2017). https://doi.org/10.1021/acs.nanolett.6b04659
Z.J. Yang, T.J. Antosiewicz, and T. Shegai, “Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions”, Optics express, 24(18), 20373-20381 (2016). https://doi.org/10.1364/OE.24.020373
I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation”, The Journal of chemical physics, 77(12), 6289-6295 (1982). https://doi.org/10.1063/1.443834
G. Zengin, G. Johansson, P. Johansson, T.J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates”, Scientific reports, 3(1), 1-8 (2013). https://doi.org/10.1038/srep03074
A.L. Rodarte, and A.R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers”, The Journal of Physical Chemistry C, 121(6), 3496-3502 (2017). https://doi.org/10.1021/acs.jpcc.6b08905
G.P. Wiederrecht, and G.A. Wurtz, J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles”, Nano Letters, 4(11), 2121-2125 (2004). https://doi.org/10.1021/nl0488228
G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dickson, R.J. Pollard, and C. Bower, “Molecular plasmonics with tunable exciton− plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies”, Nano letters, 7(5), 1297-1303 (2007). https://doi.org/10.1021/nl070284m
J. Bellessa, C. Bonnand, J.C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor”, Physical review letters, 93(3), 036404 (2004). https://doi.org/10.1103/PhysRevLett.93.036404
T.K. Hakala, J.J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules”, Physical Review Letters, 103(5), 053602 (2009). https://doi.org/10.1103/PhysRevLett.103.053602
J. Dintinger, S. Klein, F. Bustos, W.L. Barnes, and T.W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays”, Physical Review B, 71(3), 035424 (2005). https://doi.org/10.1103/PhysRevB.71.035424
P. Vasa, R. Pomraenke, S. Schwieger, Y.I. Mazur, V. Kunets, P. Srinivasan, and C. Lienau, “Coherent exciton–surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures”, Physical review letters, 101(11), 116801 (2008). https://doi.org/10.1103/PhysRevLett.101.116801
B.I. Shapiro, E.S. Tyshkunova, A.D. Kondorskiy, and V.S. Lebedev, “Light absorption and plasmon–exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J-and H-aggregates of dyes”, Quantum Electronics, 45(12), 1153 (2015). https://doi.org/10.1070/QE2015v045n12ABEH015869
A.L. Rodarte, and A.R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers”, The Journal of Physical Chemistry C, 121(6), 3496-3502 (2017). https://doi.org/10.1021/acs.jpcc.6b08905
D. Wu, Y. Cheng, X. Wu, and X. Liu, “Exciton–plasmon couplings in plexcitonic CuCl–Ag nanoshells: Rabi splitting and induced transparency”, JOSA B, 31(10), 2273-2277 (2014). https://doi.org/10.1364/JOSAB.31.002273
C.M. Guvenc, F.M. Balci, S. Sarisozen, N. Polat, and S. Balci, “Colloidal Bimetallic Nanorings for Strong Plasmon Exciton Coupling”, The Journal of Physical Chemistry C, 124(15), 8334-8340 (2020). https://doi.org/10.1021/acs.jpcc.0c01011
Y.B. Zheng, B.K. Juluri, L.L. Jensen, D. Ahmed, M. Lu, L. Jensen, and T.J. Huang, “Dynamic tuning of plasmon–exciton coupling in arrays of nanodisk–J‐aggregate complexes”, Advanced materials, 22(32), 3603-3607 (2010). https://doi.org/10.1002/adma.201000251
D. Melnikau, D. Savateeva, A. Susha, A.L. Rogach, and Y.P. Rakovich, “Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates”, Nanoscale research letters, 8(1), 1-6 (2013). https://doi.org/10.1186/1556-276X-8-134
N. Waiskopf, Y. Ben‐Shahar, and U. Banin, “Photocatalytic hybrid semiconductor–metal nanoparticles; from synergistic properties to emerging applications”, Advanced Materials, 30(41), 1706697 (2018). https://doi.org/10.1002/adma.201706697
A.P. Manuel, A. Kirkey, N. Mahdi, and K. Shankar, “Plexcitonics–fundamental principles and optoelectronic applications”, Journal of Materials Chemistry C, 7(7), 1821-1853 (2019). https://doi.org/10.1039/C8TC05054F
S.R.K. Rodriguez, J. Feist, M.A. Verschuuren, F.G. Vidal, and J. G. Rivas, “Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation”, Physical review letters, 111(16), 166802 (2013). https://doi.org/10.1103/PhysRevLett.111.166802
D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, and Y. Zhu, “A review on mechanics and mechanical properties of 2D materials—Graphene and beyond”, Extreme Mechanics Letters, 13, 42-77 (2017). https://doi.org/10.1016/j.eml.2017.01.008
T.W. Ebbesen, C. Genet, and S.I. Bozhevolnyi, “Surface-plasmon circuitry”, Physics Today, 61(5), 44 (2008). https://doi.org/10.1063/1.2930735
Y. Li, Z. Li, C. Chi, H. Shan, L. Zheng, and Z. Fang, “Plasmonics of 2D nanomaterials: properties and applications”, Advanced science, 4(8), 1600430 (2017). https://doi.org/10.1002/advs.201600430
P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S. Wu, G. Aivazian, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures”, Nature communications, 6(1), 1-6 (2015). https://doi.org/10.1038/ncomms7242
A. Ciarrocchi, D. Unuchek, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures”, Nature photonics, 13(2), 131-136 (2019). https://doi.org/10.1038/s41566-018-0325-y
D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, “Room-temperature electrical control of exciton flux in a van der Waals heterostructure”, Nature, 560(7718), 340-344 (2018). https://doi.org/10.1038/s41586-018-0357-y
P.A.D. Gonçalves, L.P. Bertelsen, S. Xiao, and N.A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces”, Physical Review B, 97(4), 041402 (2018). https://doi.org/10.1103/PhysRevB.97.041402
T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, and A. Javey, “Field-effect transistors built from all two-dimensional material components”, ACS nano, 8(6), 6259-6264 (2014). https://doi.org/10.1021/nn501723y
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature nanotechnology, 7(11), 699-712 (2012). https://doi.org/10.1038/nnano.2012.193
F. Withers, D. Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, and K.S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures”, Nature materials, 14(3), 301-306 (2015). https://doi.org/10.1038/nmat4205
D.H. Lien, M. Amani, S.B. Desai, G.H. Ahn, K. Han, J.H. He, and A. Javey, “Large-area and bright pulsed electroluminescence in monolayer semiconductors”, Nature communications, 9(1), 1-7 (2018). https://doi.org/10.1038/s41467-018-03218-8
Y. Ye, Z.J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, and X. Zhang, “Monolayer excitonic laser”, Nature Photonics, 9(11), 733-737 (2015). https://doi.org/10.1038/nphoton.2015.197
S. Wu, S. Buckley, J.R. Schaibley, L. Feng, J. Yan, D.G. Mandrus, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds”, Nature, 520(7545), 69-72 (2015). https://doi.org/10.1038/nature14290
J. Cheng, C. Wang, X. Zou, and L. Liao, “Recent advances in optoelectronic devices based on 2D materials and their heterostructures”, Advanced Optical Materials, 7(1), 1800441 (2019). https://doi.org/10.1002/adom.201800441
M. Sebek, A. Elbana, A. Nemati, J. Pan, Z.X. Shen, M. Hong, and J. Teng, “Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications”, Journal of Molecular and Engineering Materials, 8(01n02), 2030001 (2020). https://doi.org/10.1142/S2251237320300016
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, and A. Firsov, “Two-dimensional gas of massless Dirac fermions in grapheme”, Nature, 438(7065), 197-200 (2005). https://doi.org/10.1038/nature04233
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, and K.S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films”, Science, 340(6138), 1311-1314 (2013). https://doi.org/10.1126/science.1235547
C. Schneider, M.M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling”, Nature communications, 9(1), 1-9 (2018). https://doi.org/10.1038/s41467-018-04866-6
E.H. Hwang, S. Adam, and S.D. Sarma, “Carrier transport in two-dimensional graphene layers”, Physical review letters, 98(18), 186806 (2007). https://doi.org/10.1103/PhysRevLett.98.186806
S.D. Sarma, S. Adam, E.H. Hwang, and E. Rossi, “Electronic transport in two-dimensional grapheme”, Reviews of modern physics, 83(2), 407 (2011). https://doi.org/10.1103/RevModPhys.83.407
A. Gupta, T. Sakthivel, and S. Seal, “Recent development in 2D materials beyond grapheme”, Progress in Materials Science, 73, 44-126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
J.K. Lee, S. Yamazaki, H. Yun, J. Park, G.P. Kennedy, G.T. Kim, and S. Roth, “Modification of electrical properties of graphene by substrate-induced nanomodulation”, Nano letters, 13(8), 3494-3500 (2013). https://doi.org/10.1021/nl400827p
M. Hildebrand, F. Abualnaja, Z. Makwana, and N.M. Harrison, “Strain engineering of adsorbate self-assembly on graphene for band gap tuning”, The Journal of Physical Chemistry C, 123(7), 4475-4482 (2019). https://doi.org/10.1021/acs.jpcc.8b09894
T. Takahashi, K. Sugawara, E. Noguchi, T. Sato, and T. Takahashi, “Band-gap tuning of monolayer graphene by oxygen adsorption”, Carbon, 73, 141-145 (2014). https://doi.org/10.1016/j.carbon.2014.02.049
K.S. Novoselov, O.A. Mishchenko, O.A. Carvalho, and A.H.Castro Neto, “2D materials and van der Waals heterostructures”, Science, 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
M. Sebek, A. Elbana, A. Nemati, J. Pan, Z.X. Shen, M. Hong, and J. Teng, “Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications”, Journal of Molecular and Engineering Materials, 8(01n02), 2030001 (2020). https://doi.org/10.1142/S2251237320300016
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene”, Science, 349(6244), 165-168 (2015). https://www.science.org/doi/10.1126/science.aab2051
F.H. Koppens, D.E. Chang, and F.J.G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions”, Nano letters, 11(8), 3370-3377 (2011). https://doi.org/10.1021/nl201771h
A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, “The electronic properties of graphene”, Reviews of modern physics, 81(1), 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
J.W. You, S.R. Bongu, Q. Bao, and N.C. Panoiu, “Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects”, Nanophotonics, 8(1), 63-97 (2019). https://doi.org/10.1515/nanoph-2018-0106
Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, and D.N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging”, Nature, 487(7405), 82-85 (2012). https://doi.org/10.1038/nature11253
A. Trenti, I.A. Calafell, L.A. Rozema, D.A. Iranzo, P.K. Jenke, J.D. Cox, and P. Walther, “Towards plasmonic-enhanced optical nonlinearities in graphene metal-heterostructures”. In The European Conference on Lasers and Electro-Optics. Optical Society of America (p. cd_9_4, 2021, June). https://opg.optica.org/abstract.cfm?URI=CLEO_Europe-2021-cd_9_4
Y. Lu, J. Song, J. Yuan, L. Zhang, S.Q.Y. Wu, W. Yu, and Q. Bao, “Highly efficient plasmon excitation in graphene-Bi 2 Te 3 heterostructure”, JOSA B, 33(9), 1842-1846 (2016). https://doi.org/10.1364/JOSAB.33.001842
M.M. Alsaif, K. Latham, M.R. Field, D.D. Yao, N.V. Medehkar, G.A. Beane, and K. Kalantar‐zadeh, “Tunable plasmon resonances in two‐dimensional molybdenum oxide nanoflakes”, Advanced Materials, 26(23), 3931-3937 (2014). https://doi.org/10.1002/adma.20130609
H. Yin, Y. Kuwahara, K. Mori, H. Cheng, M. Wen, Y. Huo, and H. Yamashita, “Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction”, The Journal of Physical Chemistry C, 121(42), 23531-23540 (2017). https://doi.org/10.1021/acs.jpcc.7b08403
H. Cheng, X. Qian, Y. Kuwahara, K. Mori, and H. Yamashita, “A plasmonic molybdenum oxide hybrid with reversible tunability for visible‐light‐enhanced catalytic reactions”, Advanced Materials, 27(31), 4616-4621 (2015). https://doi.org/10.1002/adma.201501172
R.A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D.S. Ghosh, R. Yongsunthon, and V. Pruneri, “Tunable plasmons in ultrathin metal films”, Nature Photonics, 13(5), 328-333 (2019). https://doi.org/10.1038/s41566-019-0366-x
P.A.D. Gonçalves, L.P. Bertelsen, S. Xiao, and N.A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces”, Physical Review B, 97(4), 041402 (2018). https://doi.org/10.1103/PhysRevB.97.041402
X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature”, ACS Photonics, 5(10), 3970-3976 (2018). https://doi.org/10.1021/acsphotonics.8b00931
B. Chakraborty, J. Gu, Z. Sun, M. Khatoniar, R. Bushati, A.L. Boehmke, and V.M. Menon, “Control of strong light–matter interaction in monolayer WS2 through electric field gating”, Nano letters, 18(10), 6455-6460 (2018). https://doi.org/10.1021/acs.nanolett.8b02932
P. Ni, A. De Luna Bugallo, V.M. Arellano Arreola, M.F. Salazar, E. Strupiechonski, V. Brandli, and P. Genevet, “Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces”, ACS photonics, 6(7), 1594-1601 (2019). https://doi.org/10.1021/acsphotonics.9b00433
V. Karanikolas, S. Suzuki, S. Li, and T. Iwasaki, “Perspective on 2D material polaritons and innovative fabrication techniques”, Applied Physics Letters, 120(4), 040501 (2022). https://doi.org/10.1063/5.0074355
Copyright (c) 2022 Natalya Ogon, Tetyana Bulavinets, Iryna Yaremchuk, Rostyslav Lesyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).