Effects of Gravitational Field of a Topological Defect on Statistical Properties of Heavy Quark-Antiquark Systems

  • André Likéné Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon https://orcid.org/0000-0003-2642-7400
  • Ali Zarma Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon
  • Dieudonné Ongodo Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon
  • Jean Marie Ema'a Ema'a Ngaoundere Higher Teachers' Training College, Department of Physics, University of Maroua, Bertoua, Cameroon https://orcid.org/0000-0002-6162-7961
  • Patrice Abiama Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon; The Nuclear Technology Section (NTS), Institute of Geological and Mining Research, Yaounde, Cameroon
  • Germain Ben-Bolie Laboratory of Atomic, Molecular and Nuclear Physics, Department of Physics, Faculty of Science University of Yaounde, Yaounde, Cameroon https://orcid.org/0000-0002-0564-4548
Keywords: Thermodynamic properties, Quark, Schrödinger wave equation, Topological defect, space-time, cosmic string, extended Cornel potential, Extended Nikiforov-Uvarov method

Abstract

In this paper, we determine eigen energies, eigenfunctions and statistical properties of non-relativistic heavy quarkonia interacting with the extended Cornel potential within a space-time generated by a cosmic-string. We extend the Cornel potential by adding the inverse square potential plus the quadratic potential. We have calculated the energy eigenvalues and the corresponding eigenstates using the Extended Nikiforov-Uvarov (ENU) method. Then, based on the equation of energy spectra, the thermodynamic properties like partition function, entropy, free energy, mean energy and specific heat capacity are calculated within the space-time of a cosmic-string. In the next step, we investigate the influence of the cosmic-string parameter on quantum states of heavy quarkonia and their statistical properties.

Downloads

Download data is not yet available.

References

L.R. Ribeiro et al, Phys. Lett. A, 348, 135 (2006). https://doi.org/10.1016/j.physleta.2005.08.046

K. Bakke, Int. J. Mod. Phys. A, 26, 4239 (2011). https://doi.org/10.1142/S0217751X11054437

Y. Aharonov, and D. Bohm, Phys. Rev. 115, 485 (1959). https://doi.org/10.1103/PhysRev.115.485

K.W.B. Kibble, J. Phys. A: Math. Gen. 9(8), 1387 (1976). https://doi.org/10.1088/0305-4470/9/8/029

K.W.B. Kibble, Phys. Rev. D, 26(2), 435 (1982). https://doi.org/10.1103/PhysRevD.26.435

A. Vilenkin, and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, (Cambridge University Press, Cambridge, U.K., 1994).

J. Rocher, Thèse de Doctorat, Contraintes cosmologiques sur la physique de l'univers primordial, Universit de Paris XI-Orsay, 2005.

L. Bergström, and A. Goobar, Cosmology and Particle Astrophysics, 2nd edition (Springer, 2006).

A.-C. Davis, and T.W. Kibble, Contemp. Phys. 46, 313 (2005). https://doi.org/10.1080/00107510500165204

N.G. Marchuk, Nuovo. Cimento. B, 115, 11 (2000). https://doi.org/10.48550/arXiv.math-ph/0010045

C. Furtado, V.B. Bezerrae, and F. Moraes, Phys. Lett. A, 289, 160 (2001). https://doi.org/10.1016/S0375-9601(01)00615-6

C. Furtado, B.G.C. da Cunha, F. Moraes, E.R.B. Mello, and V.B. Bezzerra, Phys. Lett. A, 195, 90 (1994), https://doi.org/10.1016/0375-9601(94)90432-4

J. Audretsch, and A. Economou, Phys. Rev. D, 44, 3774 (1991). https://doi.org/10.1103/PhysRevD.44.3774

D.D. Harari, and V.D. Skarzhinsky, Phys. Lett. B, 240, 322 (1990). https://doi.org/10.1016/0370-2693(90)91106-L

J.R. Gott III, Astrophys. 288, 422 (1985). https://adsabs.harvard.edu/pdf/1985ApJ...288..422G

V.B. Bezerra, Phys. Rev. D, 35, 2031 (1987). https://doi.org/10.1103/PhysRevD.35.2031

W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, (World Scientific Singapore, 2010), pp. 416.

U. Kalade, and B.K. Patra, Phys. Rev. C, 92, 024901 (2015). https://doi.org/10.1103/PhysRevC.92.024901

T. Matsui, and H. Satz, Phys. Lett. B, 178, 416 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

R.C. Hwa, and X.N. Wang, editors, Quark-Gluon Plasma 3, (World Scientific Publishing, 2004), pp. 788.

V.S. Filinov, M. Bonitz, Y.B. Ivanov, M. Ilgenfritz, and V.E. Fortov, Contrib. Plasma Phys. 55, 203 (2015). https://doi.org/10.1002/ctpp.201400056

M. Schleif, and R. Wunsch, Eur. Phys. J. A, 1, 171 (1998). https://doi.org/10.1007/s100500050046

M. Abu-Shady, Inter. J. Theor. Phys. 52, 1165 (2013). https://doi.org/10.1007/s10773-012-1432-z

M. Abu-Shady, Inter. J. Theor. Phys. 54, 1530 (2015). https://doi.org/10.1007/s10773-014-2352-x

D. Nga Ongodo, J.M. Ema'a Ema'a, P. Ele Abiama, and G.H. Ben-Bolie, Int. J. Mod. Phys. E, 28, 1950106 (2019). https://doi.org/10.1142/S0218301319501064

Al-Jamel, Mod. Phys. Lett. A, 33, 1850185 (2018). https://doi.org/10.1142/S0217732318501857

H. Karayer, D. Demirhan, and F. Büyükilic, J. Math. Phys. 59, 053501 (2008). https://doi.org/10.1063/1.5022008

M.D. Katanaev, and I.V. Volovich, "Theory of defects in solids and three-dimensional gravity", Annals of Physics, 216(1), 1 1992. https://doi.org/10.1016/0003-4916(52)90040-7

C. Furtado, and F. Moraes, Phys. Lett. A, 188(4-6), 394 (1994). https://doi.org/10.1016/0375-9601(94)90482-0

C.R. Muniz, V.B. Bezerra and M.S. Cunha, Ann. Phys. 350, 105 (2014). https://doi.org/10.1016/j.aop.2014.07.017

V.F. Mukanov, H.A. Feldman, and R.H. Brandenberger, Physical Report 215, 203 (1992). https://doi.org/10.1016/0370-1573(92)90044-Z

J.L. Domenech-Garret, and M.A. Sanchis-Lozano, Physics Letters B, 669(1), 52 (2008). https://doi.org/10.1016/j.physletb.2008.09.021

Y. Cançelik, and B. Gönül, Mod. Phys. Lett. A, 29, 1450170 (2014). https://doi.org/10.1142/S0217732314501703

M. Modarres, and A. Mohamadnejad, Phys. Part. Nucl. Lett. 10, 99 (2013). https://doi.org/10.1134/S1547477113020106

M. Modarres, and H. Gholizade, Int. J. Mod. Phys. E, 17, 1335 (2008). https://doi.org/10.1142/S0218301308010453

A.N. Ikot, B.C. Lutfuoglu, M.I. Ngweke, M.E. Udoh, S. Zare, and H. Hassanabadi, Eur. Phys. J. Plus, 131, 419 (2016). https://doi.org/10.1140/epjp/i2016-16419-5

W.A. Yahua, and K.J. Oyewumi, J. Asso. Arab. Univ. Bas. App. Scie, 21, 53 (2016). https://doi.org/10.1016/j.jaubas.2015.04.001

H. Hassanabadi, and M. Hosseinpoura, Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

Published
2022-09-02
Cited
How to Cite
Likéné, A., Zarma, A., Ongodo, D., Ema’a Ema’a, J. M., Abiama, P., & Ben-Bolie, G. (2022). Effects of Gravitational Field of a Topological Defect on Statistical Properties of Heavy Quark-Antiquark Systems. East European Journal of Physics, (3), 129-141. https://doi.org/10.26565/2312-4334-2022-3-17