Assessment of Explicit Models Based on the Lambert W-Function for Modeling and Simulation of Different Dye-Sensitized Solar Cells (DSSCs)

Keywords: Model parameter, Explicit model, Lambert W-function, Characteristic points, DSSC, Curve fit

Abstract

In this paper, the characteristic points were used as input data in five different explicit models based on Lambert W-function for the extraction of model parameters of three DSSCs. Moreover, these model parameters for given values of voltages were used to obtain the corresponding currents for the simulation of the DSSCs. The results show that the sign of the model parameter does not matter for methods that do not have series resistance and shunt resistance. However, when Rsh was negative the five-parameter single-diode model failed to yield good curve fit except when Rsh was neglected and four-parameter model used. Moreover, all the model parameters for DSSCs with bitter gourd dye were regular and yielded good curve fit for all the models. On the hand, DSSCs with Rsh values negative were handled with four-parameter model to obtain good curve fit. Thus, the sign of model parameter matters in simulation of DSSC using single-diode model.

Downloads

Download data is not yet available.

References

L Hernandez-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gomez, “A review of photovoltaic systems: Design, operation and maintenance”, Sol. Energy, 188, 426-440 (2019). https://doi.org/10.1016/j.solener.2019.06.017

P.G.V. Sampaio, and M.O.A. Gonzalez, “The photovoltaic solar energy: conceptual framework”, Renew. Sustainable Energy Rev. 74, 590 (2017). https://doi.org/10.1016/j.rser.2017.02.081

M.H. Shubbak, “Advances in solar photovoltaics: Technology review and patent trends”, Renew. Sustainable Energy Rev. 115, 109383 (2019). https://doi.org/10.1016/j.rser.2019.109383

A.S. Sarkin, N. Ekren, and S. Saglam, “A review of anti-reflection and self-cleaning coating on photovoltaic panels”, Solar energy, 199, 63 (2020). https://doi.org/10.1016/j.solener.2020.01.084

V. Muteri, M. Cellura, D. Curto, V. Franzitta, S. Longo, M. Mistretta, and M.L. Parisi, “Review on life cycle assessment of solar photovoltaic panels”, Energies, 13(1), 252 (2020). https://doi.org/10.3390/en13010252

M. Krebs-Moberg, M. Pitz, T.L. Dorsette, and S. H. Gheewala, “Third generation of photovoltaic panels: A life cycle assessment”, Renew. Energy, 164, 556 (2021). https://doi.org/10.1016/j.renene.2020.09.054

A.M. Humada, S.Y. Darweesh, K.G. Mohammed, M. Kamil, S.F. Mohammed, N.K. Kasim, T.A. Tahseen, et al, “Modeling of PV system and parameter extraction based on experimental data: Review and investigation”, Sol. Energy, 199, 742 (2020). https://doi.org/10.1016/j.solener.2020.02.068

S.M. Sze, Physics of semiconductor devices, (Wiley-Interscience, NY, USA, 1969).

W.G. Pfann, and W. Van Roosbroeck, “Radiative and photovoltaic p-n junction power sources”, J. Appl. Phys. 25, (1954). https://doi.org/10.1063/1.1721579

M.B. Prince, “Silicon solar energy converters”, J. Appl. Phys. Vol. 26, 534 (1955). https://doi.org/10.1063/1.1722034

M. Wolf, and H. Rauschenbach, “Series resistance on the performance of photovoltaic modules”, Renew. Energy Convers. 3, 455 (1963). http://dx.doi.org/10.1016/0365-1789(63)90063-8

E.E. Van Dyk, and E.L. Meyer, “Analysis of the effect of parasitic resistances on the performance of photovoltaic modules”, Renew. Energy, 29, 333 (2004). http://dx.doi.org/10.1016/S0960-1481(03)00250-7

M. De Blas, J. Torres, E. Prieto, and A. Garcia, “Selecting a suitable model for characterizing photovoltaic devices”, Renew. Energy, 25, 371 (2002). https://doi.org/10.1016/S0960-1481(01)00056-8

C. Carrero, J. Rodriguez, D. Ramirez, and C. Platero, “Simple estimation of PV modules loss resistances for low error modeling”, Renew. Energy, 35, 1103 (2010). https://doi.org/10.1016/j.renene.2009.10.025

X.-G. Zhu, Z.-H. Fu, and X.-M. Long, “Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters”, Sol. Energy, 85, 393 (2011). https://doi.org/10.1016/j.solener.2010.10.022

D.L. Batzner, A. Romeo, H. Zogg, and A.N. Tiwari, CdTe/CdS Solar cell performance under low irradiance, in: Proceeding of the 17th European photovoltaic solar energy conferences and exhibition, (WIP-Renable Energies, Munich, 2001). pp. 1-4.

K.L. Kennerd, “Analysis of performance degredation in CdS solar cells”, IEEE Trans. Acrosp. Electron Syst. AES-5, 912 (1969). https://doi.org/10.1109/taes.1969.309966

J. Charles, M. Abdelkrim, Y. Muoy, and P. Mialhe, “A practical method of analysis of the current-voltage characteristics of solar cells”, Sol. Cells, 4, 169 (1981). https://doi.org/10.1016/0379-6787(81)90067-3

W. De Soto, S.A. Klein, and W.A. Beckman, “Improvement and validation of a model for photovoltaic array performance”, Sol. Energy, 80, 78 (2006). https://doi.org/10.1016/j.solener.2005.06.010

C. Carrero, J. Amador, and S. Arnaltes, “A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances”, Renew. Energy, 32, 2579 (2007). https://doi.org/10.1016/j.renene.2007.01.001

W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors”, Bell syst. Tech. J. 28, 435 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb03645.x

J. Cubas, S. Pindado, and M. Victoria, “On the analytical approach for modeling photovoltaic systems behavior”, Power sources, 247, 467 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.008

S. Lineykin, M, Averbukh, and A. Kuperman, “Five-parameter model of photovoltaic cell based on STC data and dimensionless”, in: Poceedings of the 2012 IEEE 27th convention of electronical and electronics engineers in Israel, (Eilat, Israel, 2012). pp. 1-5, https://doi.org/10.1109/EEEI.2012.6377079

L. Peng, Y. Sun, Z. Meng, Y. Wang, and Y. Xu, “A new method for determining the characteristics of solar cells”, J. Power sources, 227, 131 (2013). https://doi.org/10.1016/j.jpowsour.2012.07.061

L. Peng, Y. Sun, and Z. Meng, “An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition”, J. Power Sources, 248, 621 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.058

A. Orioli, and A. Di Gangi, “A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data”, Appl. Energy, 102, 1160 (2013). https://doi.org/10.1016/j.apenergy.2012.06.036

J. Ma, K.L. Man, T.O. Ting, N. Zhang, S.-U. Guan, and P.W.H. Wong, “Approximate single-diode photovoltaic model for efficient I-V characteristic estimation”, Sci. World J. 23047 (2013). https://doi.org/10.1155/2013/230471

J. Ma, K.L. Man, T.O. Ting, N. Zhang, S.-U. Guan, and P.W.H. Wong, “Parameter estimation of photovoltaic models via Cuckoo” Search. J. appl. Math. 362619 (2013). https://doi.org/10.1155/2013/362619

Y. Li, W. Huang, H. Huang, C. Hewitt, Y. Chen, G. Fang, and D.L. Carroll, “Evaluation of methods to extract parameters from current-voltage characteristics of solar cells”, Sol. Energy, 90, 51 (2013). https://doi.org/10.1016/j.solener.2012.12.005

S.B. Dongue, D. Njomo, J.G. Tamba, L. Ebengai, “Modeling of electrical response of illuminated crystalline photovoltaic modules using four-parameter models”, Int. J. Emerg. Technol. Afv. Eng. 2, 612 (2012). https://www.ijetae.com/files/Volume2Issue11/IJETAE_1112_96.pdf

K. Ishibashi, Y. Kimura, and M. Niwano, “An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristics”, J. appl. Phys. 103, (2008). https://doi.org/10.1063/1.2895396

S. Lineykin, M. Averbukh, and A. Kuperman, “An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel”, Renew. Sustain. Energy Rev. 30, 282 (2014). https://doi.org/10.1016/j.rser.2013.10.015

D.T. Cotfas, P.A. Cotfas, and S. Kaplanis, “Methods to determine the DC parameters of solar cells: A critical review”, Renew. Sustain. Energy Rev. 28, 588 (2013). https://doi.org/10.1016/j.rser.2013.08.017

D.T. Cotfas, P.A. Cotfas, D. Ursutiu, and C. Samoila, D.T. Cotfas, P.A. Cotfas, D. Ursutiu, and C. Samoila, in: 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), (Brasso, Romania, 2012). pp. 966 972. https://doi.org/10.1109/OPTIM.2012.6231814

E.I. Batzelis, and S.A. Papathanassiou, “A method for the analytical extraction of the single-diode PV model parameters”, IEEE Trans. Sustain. Energy, 7, 504 (2016). https://doi.org/10.1109/TSTE.2015.2503435

J. Cubas, S. Pindado, and C. de Manuel, “Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W function”, Energies, 7, 4098 (2014). https://doi.org/10.3390/en7074098

G. Petrone, C.A. Ramos-Paja, and G. Spagnuolo, Photovoltaic sources modeling, first ed. (Willey-IEEE Press, Hoboken, NJ, USA, 2017), pp. 208.

Y. Mahmoud, and E.F. El-Saadany, “Fast power-peaks estimator for partially shaded PV systems”, IEEE. Trans. Energy. Convers. 31, 206 (2016). https://doi.org/10.1109/TEC.2015.2464334

S. Pindado, J. Cubas, E. Roibas-Millan, F. Bugallio-Siegel, and F. Sorribes-Palmer, “Assessment of explicit models for different photovoltaic technologies”, Energies, 11, 1 (2018). https://doi.org/10.3390/en11061353

M. Oulcaid, H. El Fadil, A.L. Ammeh, A. Yahya, and F. Giri, “One shape parameter-based explicit model for photovoltaic cell and panel”, Sustain. Energy, Grids Networks, 21, 100312 (2020). https://doi.org/10.1016/j.segan.2020.100312

A. Et-Tayyan, “An empirical model for generating the IV characteristics for a photovoltaic system”, J. Al-Aqsa Uni. 10, 214 (2006). https://www.alaqsa.edu.ps/site_resources/aqsa_magazine/files/225.pdf

E. Roibas-Millan, J.L. Cubera-Estalrrich, A. Gonzalez-Estrada, R. Jado-Peunte, M. Sanabria-Pinzon, D. Alfonso-Corcuera, J.M. Alvarez, J. Cubas, and S. Pindado, “Lamber W-function simplified expressions for photovoltaic current-voltage modeling”, in: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, (IEEE, Spain, 2020). pp. 1-6. https://doi.org/10.1109/EEEIC%2FICPSEUROPE49358.2020.9160734

A. Babangida, Doctorate Thesis, Modiboo Adama University Yola (Nigeria), 2022.

S. Karmalkar, and S. Haneefa, “A physically based explicit J-V model of a solar cell for simple design calculations”, IEEE Electron Device Letters, 29(5), 449 (2008). https://dx.doi.org/10.1109/LED.2008.920466

A.K. Das, “An explicit J-V model of a solar cell for simple fill factor calculation”, Sol. Energy, 85, 1906 (2011). https://doi.org/10.1016/j.solener.2011.04.030

T.O. Saetre, O.M. Midtgand, and G.H. Yordanov, “A new analytical solar cell I-V curve model”, Renew. Energy, 36, 2171 (2011). https://doi.org/10.1016/j.renene.2011.01.012

Published
2022-12-06
Cited
How to Cite
Yerima, J., William, D., Babangida, A., & Ezike, S. (2022). Assessment of Explicit Models Based on the Lambert W-Function for Modeling and Simulation of Different Dye-Sensitized Solar Cells (DSSCs). East European Journal of Physics, (4), 136-144. https://doi.org/10.26565/2312-4334-2022-4-13