Boron Isotopic Ratio (δ11B) Measurements in Boron Carbide (B4C): Benchmarking Between SF-ICP-MS and PIGE Techniques

  • Dmytro Kutnii National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-9591-4013
  • Stanislav Vanzha National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-0949-947X
  • Dmytro Burdeynyi National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-4431-7264
  • Volodymyr Levenets National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-6439-0576
  • O. Omelnik National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine
  • A. Shchur National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, Kharkiv, Ukraine
Keywords: ICP-MS, PIGE, boron carbide, isotopic ratio, nuclear application, benchmarking

Abstract

The results of comparing the analytical capabilities of Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS) and Particle Induced Gamma-ray Emission (PIGE) methods for determining the 11B/10B isotope ratio in boron carbide samples (B4C) are presented. The following nuclear reactions excited by protons on the stable boron isotopes are considered: 10B(p,aγ)7Be, 10B(p,pγ)7Be and 11B(p,γ)12C. The optimum proton energy range was determined to be within 550 to 600 keV, while the energies of the induced gamma-radiation that can be used for quantitative estimation of the boron isotopes were 429 keV and 4439 keV for the isotopes 10B and 11B, respectively. Considering the uncertainties of measurements, the data for the 11B/10B isotope ratios, measured by the SF‑ICP‑MS and PIGE methods, are found to correlate with each other; yet they are characterized by a systematic bias. The uncertainty of measurements by the PIGE method was somewhat higher in comparison with SF-ICP-MS, and ranged from ± 4.1 % to ± 4.3 %, and from ± 1.1 % to ± 3.5 %, respectively.

Downloads

Download data is not yet available.

References

C. Voster, L. Greef, and P. Coetzee, S. Afr. J. Chem. 63, 207 (2010), http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0379-43502010000100033&lng=en&nrm=iso

K. Tirez, W. Brusteen, D. Widory, E. Petelet, A. Bregnot, D. Xue, P. Boeckx, and J. Bronders, J. Anal. At. Spectrom. 25, 964 (2010), https://doi.org/10.1039/C001840F

I. Takasaki, T. Nagumo, T. Inaba, N. Yoshino, and T. Maruyama, J. Nucl. Sci. Technol. 49(8), 867 (2012), https://doi.org/10.1080/00223131.2012.703946

Nuclear Data Center, Japan Atomic Energy Agency. Boron Cross Sections. https://wwwndc.jaea.go.jp/cgi-bin/Tab80WWW.cgi?lib=J40&iso=B010.

J.S. Becker, J. Anal. At. Spectrom. 17, 1172 (2002), https://doi.org/10.1039/B203028B

J. Aggarwal, F. Böhm, G. Foster, S. Halas, B. Hönisch, S.-Y. Jiang, J. Kosler, et al. J. Anal. At. Spectrom. 24, 825 (2009), https://doi.org/10.1039/B815240C

S. Kasemann, D. Schmidt, J. Bijma, and G. Foster, Chem. Geol. 260(1), 138 (2009), https://doi.org/10.1016/j.chemgeo.2008.12.015

P. Coetzee, and F. Vanhaecke, Anal. Bioanal. Chem. 383, 977 (2005), https://doi.org/10.1007/s00216-005-0093-7

S. Chhillar, R. Acharya, S. Sodaye, and P. Pujari, Anal. Chem. 86(22), 11167 (2014), https://dx.doi.org/10.1021/ac5024292

Y. Sunitha, and S. Kumar, Appl. Radiat. Isot. 128, 28 (2017), https://doi.org/10.1016/j.apradiso.2017.06.037

V. Levenets, O. Omelnyk, A. Shchur, and B. Shirokov, J. Radioanal. Nucl. Chem. 329, 1183 (2021), https://doi.org/10.1007/s10967-021-07873-y

Z. Varga, M. Krachler, A. Nicholl, M. Ernstberger, T. Wiss, M. Wallenius, and K. Mayer, J. Anal. At. Spectrom. 33, 1076 (2018), https://doi.org/10.1039/C8JA00006A

V. Bondarenko, L. Glazunov, A. Goncharov, V. Kolot, V. Kuz'menko, V. Levenets, A. Omel'nik, V. Suhostavec, and V. Shchur, Scientific Bulletin (Belgorod State University), 2(15), 86 (2001).

V. Levenets, A. Shchur, O. Omelnyk, B. Shirokov, Functional Materials. 14(2), 258 (2007), http://functmaterials.org.ua/contents/14-2/fm142-08.pdf

J. Bird, M. Scott, L. Russell, and M. Kenny, Aust. J. Phys. 31, 209 (1978), https://doi.org/10.1071/PH780209

I. Golicheff, M. Loeuillet, and Ch. Engelmann, J. Radioanal. Chem. 12, 233 (1972), https://doi.org/10.1007/BF02520991

Published
2022-06-02
Cited
How to Cite
Kutnii, D., Vanzha, S., Burdeynyi, D., Levenets, V., Omelnik, O., & Shchur, A. (2022). Boron Isotopic Ratio (δ11B) Measurements in Boron Carbide (B4C): Benchmarking Between SF-ICP-MS and PIGE Techniques. East European Journal of Physics, (2), 75-79. https://doi.org/10.26565/2312-4334-2022-2-08