Study of Electrostatic Ion-Cyclotron Waves in Magnetosphere of Uranus

Keywords: Electrostatic Ion-cyclotron waves, Velocity shear, density gradient and Inhomogeneous Electric Field, Magnetosphere/Ionosphere of Uranus

Abstract

In this manuscript, the method of characteristics particle trajectories details used and the dispersion relation for the ionosphere of Uranus were being used to investigate electrostatic ion-cyclotron waves with parallel flow velocity shear in the presence of perpendicular inhomogeneous DC electric field and density gradient. The growth rate has been calculated using the dispersion relation. Electric fields parallel to the magnetic field transmit energy, mass, and momentum in the auroral regions of the planetary magnetosphere by accelerating charged particles to extremely high energies. The rate of heating of plasma species along and perpendicular to the magnetic field is also said to be influenced by the occurrence of ion cyclotron waves and a parallel electric field in the acceleration area.

Downloads

Download data is not yet available.

References

D.S. Lemons D. Winske, and S.P. Gary, J. Geophys. Res. 97, 19381 (1992). https://doi.org/10.1029/92JA01735

W.S. Kurth, D.D. Barbosa, D.A. Gurnett, and F.L. Scarf, J. Geophys. Res. 92(A13), 15225 (1987). https://doi.org/10.1029/ja092ia13p15225

P. Zarka, Advances in Sp. Res. 33, 2045 (2004). https://doi.org/10.1016/j.asr.2003.07.05

G. Ganguli, and Y.C. Lee, Phys. Fluids, 28, 761 (1985). https://doi.org/10.1063/1.865096

G. Ganguli, Y.C. Lee, and P.J. Palmadesso, Phys. Fluids, 31, 823 (1988). https://doi.org/10.1063/1.866818

K.I. Nishikawa, G. Ganguli, Y.C. Lee, and P.J. Palmadesso, Phys. Fluids, 31, 1568 (1988). https://doi.org/10.1063/1.866696

G. Ganguli , Bakshi P. and Palmadesso P., J. Geophys. Res. 89, 945 (1984). https://doi.org/10.1029/JA089iA02p00945

R Misra. and Tiwari M.S., Planetary and Space Sci. 54 (2), 188 (2006). https://doi.org/10.1016/j.pss.2005.11.003

G. Ahirwar, P. Varma and M.S.Tiwari, Annales Geophysicae, 24(7), 1919 (2006). https://doi.org/10.5194/angeo-24-1919-2006

P. Kandpal, R. Kaur, and R.S. Pandey, Advances in Space research, 61, 581 (2018). https://doi.org/10.1016/j.asr.2017.09.033

P. Kandpal, and R.S. Pandey, Astrophysics and Space Sciences, 363, 227 (2018). https://doi.org/10.1007/s10509-018-3442-7

R.K. Tyagi, K.K. Srivastava, and R.S. Pandey, Surface Engineering and Applied Electrochemistry, 47(4), 370 (2011). https://doi.org/10.3103/S1068375511040144

A.R. Niknam, E. Rastbood, and S.M. Khorashadizadeh, Phys. Plasmas, 22, 122102 (2015). https://doi.org/10.1063/1.4936825

M. Barati Moqadam Niyat, S.M.Khorashadizadeh and A.R. Niknam, Physics of Plasmas, 23, 122110 (2016). https://doi.org/10.1063/1.4971810

M.F. Bashir, R. Ilie, and G.Murtaza, Physics of Plasmas, 25, 052114 (2018). https://doi.org/10.1063/1.5025843

M. Sharifi, and A. Parvazian, Physica A, 393, 489 (2014). https://doi.org/10.1016/j.physa.2013.09.024

J. Sharma, S.C. Sharma, and D. Kaur Progress In Electromagnetics Research Letters, 54, 123 (2015). https://doi.org/10.2528/PIERL15042703

Y. Liu, Y.F. Wang, and T.P. Hu, Phys. Plasmas, 23, 042103 (2016). https://doi.org/10.1063/1.4945635

K.-Y. Yi, Z.A. Wei, J.X. Ma, Q. Liu, and Z.Y. Li, Physics of Plasmas, 27, 082103 (2020). https://doi.org/10.1063/1.5144453

I. Sereda, Ya. Hrechko, Ie. Babenko, East Eur. J. Phys. 3, 81 (2021). https://doi.org/10.26565/2312-4334-2021-3-12

V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov, East Eur. J. Phys. 4, 152 (2021). https://doi.org/10.26565/2312-4334-2021-4-20

M. Kono, J. Vranjes, and N. Batool, Phys. Rev. Lett. 112, 105001 (2014). https://doi.org/10.1103/PhysRevLett.112.105001

M.F. Bashir, N. Noreen, G. Murtaza, and P.H. Yoon, Plasma Phys. Controlled Fusion, 56, 055009 (2014). https://doi.org/10.1088/0741-3335/56/5/055009

M.F. Bashir, and J. Vranjes, Phys. Rev. E, 91, 033113 (2015). https://doi.org/10.1103/PhysRevE.91.033113

S.M. Khorashadizadeh, M. Barati M. Niyat, and A.R. Niknam, Phys. Plasmas, 23, 062102 (2016). https://doi.org/10.1063/1.4953094

S.M. Khorashadizadeh, E. Rastbood, and A.R. Niknam, Phys. Plasmas, 22, 072103 (2015). https://doi.org/10.1063/1.4926521

M.S. dos Santos, L.F. Ziebell, and R. Gaelzer, Phys. Plasmas, 22, 122107 (2015). https://doi.org/10.1063/1.4936972

P. Verma, and M.S. Tiwari, Physica Scripta, 44, 296 (1991). https://doi.org/10.1088/0031-8949/44/3/010

J.D. Huba, J. Geophys. Res. 86, 3653 (1981). https://doi.org/10.1029/JA086iA05p03653

R.S. Pandey , Progress in Electromagnetics Research B, 11, 39 (2009). https://www.jpier.org/PIERB/pierb11/04.08073101

Eliasson, P.K. Shukla, and J.O. Hall, 13, 024502 (2006). https://doi.org/10.1063/1.2173934.

E.N. Opp, and A.B. Hassam, Phys. of Fluids B, 3, 885 (1991). https://doi.org/10.1063/1.859845

M. Fujimoto, and T. Terasawa, J. Geophys. Res. 100, 12025 (1995). https://doi.org/10.1029/94JA02219

N.F. Ness, et al. Science, 233, 4759 (1986). https://doi.org/10.1126/science.233.4759.85

S. Stanley, and J. Bloxham, Nature, 428, 151 (2004). https://doi.org/10.1038/nature02376

Published
2022-03-17
Cited
How to Cite
Pandey, R. S., & Kumar, M. (2022). Study of Electrostatic Ion-Cyclotron Waves in Magnetosphere of Uranus. East European Journal of Physics, (1), 32-39. https://doi.org/10.26565/2312-4334-2022-1-05