A Review on Processing Routes, Properties, Applications, and Challenges of Titanium Metal Matrix Composite
Abstract
Titanium is currently familiar for its light weight, high strength, and non-reactive nature over all the metals. Titanium metal matrix composites (TMCs) are very popular in the field of aerospace, automotive, defense, and biomedical because of their high specific strength, light weight, and biocompatibility nature. Some of the extensively used fabrication methods like powder metallurgy (PM), additive manufacturing (AM), and spark plasma sintering (SPS) have been reviewed here with some of the properties of TMCs. By varying various types of reinforcements, it is possible to achieve the required properties as per industrial and modern applications in TMC. This study also includes the consequence of sintering temperature on properties of TMCs like physical, mechanical, and structural. Titanium alloys are showing good mechanical and biomedical properties when reinforced with carbon fibers, borides, ceramics, and plenty of other materials as continuous fiber or discontinuous particulates and whiskers. In this paper, the applications of TMCs in aerospace, automobile, biomedical, and defense have been narrated. Besides all these favorable properties and applications, TMCs can’t be used extensively in the said applications because of their high cost and difficulty in machining, that discussed in this paper over various challenges of TMCs. The cost reduction can be done by making Ti - super alloys. In addition, there is a necessity for an effective cooling system during the machining of TMCs to enhance machinability and some of the effective methods which may enhance the machinability of TMCs were also discussed.
Downloads
References
H. Attar, S.E. Haghighi, D. Kent, and M.S. Dargusch, Int. J. Machine Tools and Manufact. 133, 85-102 (2018), https://doi.org/10.1016/j.ijmachtools.2018.06.003
M.D. Hayat, H. Singh, Z. He, and P. Cao, Composites Part A: Applied Science and Manufacturing, 121, 418-438 (2019), https://doi.org/10.1016/j.compositesa.2019.04.005
B. Gareb, C.C. Roossien, N.B.V. Bakelen, G.J. Verkerke, A. Vissink, R.R. Bos, and B.V. Minnen, Scientific reports, 10, 1 (2020), https://doi.org/10.1038/s41598-020-75299-9
M. Haghshenas, Reference Modul Mater. Sci. Mater. Eng., 1–28, (2016), https://doi.org/10.1016/B978-0-12-803581-8.03950-3
K.M. Rahman, V.A. Vorontsov, S.M. Flitcroft, and D. Dye, Adv Eng Mater, 19, 1700027 (2017), https://doi.org/10.1002/adem.201700027
S.A. Singerman, and J.J. Jackson, in: Superalloys 1996: Proceedings of the Eigth International Symposium on Superalloys (Warrendale, TMS, 1996), pp. 579-586, https://www.tms.org/superalloys/10.7449/1996/superalloys_1996_579_586.pdf
J. Lee, H. Lee, K.H. Cheon, C. Park, T.S. Jang, H.E. Kim, and H.D. Jung, Additive Manufacturing, 30, 100883 (2019), https://doi.org/10.1016/j.addma.2019.100883
L.C. Zhang, and H. Attar, Advanced engineering materials, 18, 463-475, (2015), https://doi.org/10.1002/adem.201500419
S. Jayalxmi, R.A. Singh, and M. Gupta, Indian journal of advances in chemical science, S1, 283-288 (2016), https://www.ijacskros.com/artcles/IJACS-2S-59.pdf
M.S. Abd-Elwahed, A.F. Ibrahim, and M.M. Reda, Journal of Mterials Research and Technology, 9, 8528-8535 (2020), https://doi.org/10.1016/j.jmrt.2020.05.021
Jiao Y., Huang L., Geng L., Journals of alloys and compounds, 767, 1196-1215 (2018), https://doi.org/10.1016/j.jallcom.2018.07.100
V. Amigó, M.D. Salvador, and A.V.F. Romero, Materials science forum, 534, 817-820 (2007), https://doi.org/10.4028/www.scientific.net/MSF.534-536.817
V. Amigo, E. Klyastskina, V. Bonache, J. Candel, and F. Romero, Congress et Exhibition , 237 (2005).
S.C. Tjong, and Y.W. Mai, Composites Science and Technology, 68, 583-601 (2008), https://doi.org/10.1016/j.compscitech.2007.07.016
Shudong Luo, Tingting Song, Bing Liu, Jie Tian, and Ma Qian, Advanced Engineering Materials, 21(7), 1801331 (2019), https://doi.org/10.1002/adem.201801331
S. Ehtemam-Haghighi, G. Cao, and L.C. Zhang, Journal of Alloys and Compounds, 692, 892-897 (2017), https://doi.org/10.1016/j.jallcom.2016.09.123
S Wang, LJ Huang, L Geng, F Scarpa, Y Jiao, HX Peng, Scientific reports, 7(1), 1-13 (2017), https://doi.org/10.1038/srep40823
T.M.T. Godfrey, P.S. Goodwin, and C.M.W. Close, Advanced Engineering Materials, 2(3), 85-91 (2000) https://doi.org/10.1002/(SICI)1527-2648(200003)2:3<85::AID-ADEM85>3.0.CO;2-U
T. Saito, H. Takamiya, and T. Furuta, Materials Science and Engineering: A, 243, 273-278 (1998), https://doi.org/10.1016/S0921-5093(97)00813-7
T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, and C.M.W. Close, Materials Science and Engineering: A, 282, 240-250 (2000), https://doi.org/10.1016/S0921-5093(99)00699-1
K.B. Panda, and K.S.R. Chandran, Adv Mater Processes, 160, 59 (2002).
A. Pasha, B.M. Rajaprakash, and A.C. Manjunath, Material Science Research India, 17, 201-206 (2020), http://dx.doi.org/10.13005/msri/170302
A. Fregeac, F. Ansart, S. Selezneff, and C. Estournès, Ceramics International, 45, 23740-23749 (2019), http://dx.doi.org/10.1016/j.ceramint.2019.08.090
S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Composites Part A: Applied Science and Manufacturing, 48, 57-66 (2013), https://doi.org/10.1016/j.compositesa.2012.12.005
J. Ruzic, M. Simić, N. Stoimenov, D. Božić, and, J. Stašić, Metallurgical and Materials Engineering, 27, (2021), https://doi.org/10.30544/629
E. Fereiduni, A. Ghasemi, and, M. Elbestawi, Aerospace, 7, 77, (2020), https://doi.org/10.3390/aerospace7060077
F. Saba, E. Kabiri, J.V. Khaki, and M.H. Sabzevar, Powder Technology, 288, 76-86 (2016), https://doi.org/10.1016/j.powtec.2015.10.030
A. Aytimur, S. Koçyiğit, and I. Uslu, Journal of Inorganic and Organometallic Polymers and Materials, 24, 927-932 (2014), https://doi.org/10.1007/s10904-014-0064-6
L. Bolzoni, E.M.R. Navas, and, E. Gordo, Materials Science and Engineering: A, 687, 47-53 (2017), https://doi.org/10.1016/j.msea.2017.01.049
M.F.S.H. Zawrah, I.M.H. Allah, M.H. Ata, and H. Shouib, Materials Research Express, 6, (2019), https://doi.org/10.1088/2053-1591/ab316e
C. Suryanarayana, and A. Al-Joubori, in: Encyclopedia of Iron, Steel, and Their Alloys, (eBook Published, Boca Raton, 2016), pp. 159-177, https://doi.org/10.1081/E-EISA-120053049.
H.A. Hegab, Manufacturing Review, 3, 11 (2016), https://doi.org/10.1051/mfreview/2016010
J. P. Kruth, M. C. Leu, and T. Nakagawa, CIRP Ann. - Manuf. Technol., 47, 525 (1998), https://doi:org/10.1016/S0007-8506(07)63240-5
K.V. Wong, and A Hernandez, International Scholarly Research Network ISRN Mechanical Engineering. 2012, 1 (2012), https://doi.org/10.5402/2012/208760.
Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning, and H. Wang, Compos. Part B Eng., 133, 91-100 (2018), https://doi.org/10.1016/j.compositesb.2017.09.019
H. Attar et al., Mater. Sci. Eng. A, 625, 350-356 (2015), https://doi.org/10.1016/j.msea.2014.12.036
D. Gu, G. Meng, C. Li, W. Meiners, and R. Poprawe, Scr. Mater. 67, 185-188 (2012), https://doi.org/10.1016/j.scriptamat.2012.04.013
D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Compos. Sci. Technol., 71, 1612-1620 (2011), https://doi.org/10.1016/j.compscitech.2011.07.010
Y. Zhang, J. Sun, and R. Vilar, J. Mater. Process. Technol., 211, 597-601 (2011), https://doi.org/10.1016/j.jmatprotec.2010.11.009
M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay, Scr. Mater. 63, 438-441 (2010), https://doi.org/10.1016/j.scriptamat.2010.04.044
D. Gu, C. Hong, and G. Meng, Metall Mater Trans A, 43, 697-708 (2012), https://doi.org/10.1007/s11661-011-0876-8
S.L. Sing, F.E. Wiria, and W.Y. Yeong, Int. J. Refract. Met. Hard Mater. 77, 120-127 (2018), https://doi.org/10.1016/j.ijrmhm.2018.08.006
P.K. Farayibi, T.E. Abioye, A. Kennedy, and A.T. Clare, J. Manuf. Process. 45, 429-437 (2019), https://doi.org/10.1016/j.jmapro.2019.07.029
V.K. Balla, A. Bhat, S. Bose, and A. Bandyopadhyay, J. Mech. Behav. Biomed. Mater. 6, 9-20 (2012), https://doi.org/10.1016/j.jmbbm.2011.09.007
M. Das et al., J. Mech. Behav. Biomed. Mater. 29, 259-271 (2014), https://doi.org/10.1016/j.jmbbm.2013.09.006
B. Vrancken, L.Thijs, J.P. Kruth., and J. Van Acta Materialia, 68, 150-158 (2014). https://doi.org/10.1016/j.actamat.2014.01.018
Sairam, K., et al. International Journal of Refractory Metals and Hard Materials 42, 185-192, (2014). https://doi.org/10.1016/j.ijrmhm.2013.09.004
M. Suárez, A. Fernández, J.L. Menéndez, R.Torrecillas, H.U.Kessel, J.Hennicke, R.Kirchner, and T.Kessel, in: Sintering applications, edited by Burcu Ertuğ, (InTech, Croatia, 2013), pp. 319-342, https://doi.org/10.5772/53706
K. Yang, D. Hitchcock, J. He, and A.M. Rao, Tuning Electrical Properties of Carbon Nanotubes via Spark Plasma Sintering, Encyclopedia of Nanotechnology; (Springer, Berlin/Heidelberg, Germany, 2012), pp. 2780-2788, https://doi.org/10.1007/978-90-481-9751-4_169
N. Saheb et al., J. Nanomater, 2012, 983470-82 (2012), https://doi.org/10.1155/2012/983470
K. Vasanthakumar and S. R. Bakshi, Ceram. Int., 44, 484-494 (2018), https://doi.org/10.1016/j.ceramint.2017.09.202
A. Borrell, M. D. Salvador, V. García-Rocha, A. Fernández, E. Chicardi, and F. J. Gotor, Mater. Sci. Eng. A, 543, 173-179, (2012), https://doi.org/10.1016/j.msea.2012.02.071
Y.F. Yang, and M. Qian, in: Titanium powder metallurgy, Science, Technology and Applications, (Elsevier, 2015), pp. 219-235, https://doi.org/10.1016/B978-0-12-800054-0.00013-7
N. Gupta, and B. Basu, in: Intermetallic Matrix Composites, Properties and Applications, (Elsevier, 2018), pp. 243–302, https://doi.org/10.1016/B978-0-85709-346-2.00010-8
M. Zadra, and L. Girardini, Mater. Sci. Eng. A, 608, 155-163 (2014), https://doi.org/10.1016/j.msea.2014.04.066
T.E. O'Connell, Production of Titanium Aluminide Products, Report AFWAL-TR-83-4050, Wright-Patterson AFB OH, (1983).
J.J. Jackson, et al, Titanium Aluminide Composites, NASP Contractor Report 1112, NASP JPO, Wright-Patterson AFB OH, (1991).
M. Selva Kumar, P. Chandrasekar, P. Chandramohan, and M. Mohanraj, Mater. Charact. 73, 43-51, (2012), https://doi.org/10.1016/j.matchar.2012.07.014
X.J. Shen, C. Zhang, Y.G. Yang, and L. Liu, Addit. Manuf. 25, 499-510 (2019), https://doi.org/10.1016/j.addma.2018.12.006
K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, Compos. Sci. Technol. 72, 1291-1297 (2012), https://doi.org/10.1016/j.compscitech.2012.05.002
Z. Yan, F. Chen, Y. Cai, and Y. Zheng, Powder Technol. 267, 309-314 (2014), https://doi.org/10.1016/j.powtec.2014.07.048
S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, Mater. Sci. Eng. A, 628, 75-83 (2015), https://doi.org/10.1016/j.msea.2015.01.033
F.C. Wang et al., Carbon N.Y., 95, 396-407, (2015), https://doi.org/10.1016/j.carbon.2015.08.061
M.A. Lagos, I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian, Mater. Sci. Eng. A, 655, 44-49 (2016), https://doi.org/10.1016/j.msea.2015.12.050
Y. Song et al., Mater. Des. 109, 256-263 (2016), https://doi.org/10.1016/j.matdes.2016.07.077
N.S. Karthiselva, and S.R. Bakshi, Mater. Sci. Eng. A, 663, 38-48 (2016), https://doi.org/10.1016/j.msea.2016.03.098
S. Li et al., Mater. Des. 95, 127-132 (2016), https://doi.org/10.1016/j.matdes.2016.01.092
S. Zherebtsov, M. Ozerov, M. Klimova, D. Moskovskikh, N. Stepanov, and G. Salishchev, Metals, 9, 1175 (2019), https://doi.org/10.3390/met9111175
P. Odetola, A. P. Popoola, E. Ajenifuja, and O. Popoola, J. Met. Mater. Miner. 30, 119-127 (2020),
P. Singh, H. Pungotra, and N.S. Kalsi, Materials Today: Proceedings, 4, 8971-8982 (2017), https://doi.org/10.1016/j.matpr.2017.07.249
C. Sandu, S. Vintilă, M. Sima, F. Zavodnic, T. Tipa, and C. Olariu, Int. J. Systems Appl. Eng. Dev. 12, 168 (2018).
H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, and M.S. Dargusch, J. Alloys Compd. 827, 154263 (2020), https://doi.org/10.1016/j.jallcom.2020.154263
T. Furuta, Titanium for Consumer Applications: Real-World Use of Titanium, (Elsevier, 2019), pp. 77-90, https://doi.org/10.1016/B978-0-12-815820-3.00006-X
O. Schauerte, Advanced Engineering Materials, 5, 411-418, (2003), https://doi.org/10.1002/adem.200310094
A.K. Sachdev, K.Kulkarni, Z.Z. Fang, R.Yang, and V. Girshov. JOM, 64, 553-565 (2012), http://doi.org/10.1007/s11837-012-0310-8
A. Pettersson, P. Magnusson, P. Lundberg, and M. Nygren, Int. J. Impact Eng. 32, 387-399 (2005), https://doi.org/10.1016/j.ijimpeng.2005.04.003
A. Paman, G. Sukumar, B. Ramakrishna, and V. Madhu, Int. J. Prot. Structures, 11, 185-208 (2020), https://doi.org/10.1177/2041419619860533
L.S. Ahmed, and M.P. Kumar, Mat. Manufact. Processes, 31(7), 951-959 (2016), https://doi.org/10.1080/10426914.2015.1048475
J. Xu, M. Ji, M.C.F. Ren, Mat. Manufact. Processes, 32(12), 1401-1410 (2019), https://doi.org/10.1080/10426914.2019.1661431
J. Xu, C. Li, M. Chen, and, F. Ren, Mat. Manufact. Processes, 34, 1182-1193, (2019) https://doi.org/10.1080/10426914.2019.1615085
K. Mahapatro, and V. Pasam, Smart and Sustainable Manufact. Systems, 4, 62-80 (2020), https://doi.org/10.1520/SSMS20200016
K. Mahapatro, G .Mahendra, A. Markandeya, and P.V. Krishna, Smart and Sustainable Manufact. Systems, 5, 47-64 (2021), https://doi.org/10.1520/SSMS20200041
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).