Solubility of Carbon, Manganese and Silicon in α-Iron of Fe-Mn-Si-C Alloys

  • Natalia Filonenko State Institution “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine; Z.I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine https://orcid.org/0000-0003-1219-348X
  • Alexander Babachenko Z.I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine 1, Akademika Starodubova Square, Dnipro, Ukraine https://orcid.org/0000-0003-4710-0343
  • Ganna Kononenko Z.I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine
  • Ekaterina Domina Z.I. Nekrasov Iron and Steel Institute of National Academy of Sciences of Ukraine, Dnipro, Ukraine
Keywords: Fe-Mn-Si-C alloys, solubility limit of carbon, manganese, silicon in α-iron

Abstract

The study was performed on alloys with a carbon content of 0.37-0.57% (wt.), silicon 0.23-0.29% (wt.), manganese 0.7‑0.86% (wt.), the rest– iron. To determine the phase composition of alloys used microstructural, microanalysis and X-ray analysis. In addition, the physical characteristics of the alloys studied in this paper were determined, such as alloy chemical dependence of extension and contraction ratio, impact toughness and hardness. The results obtained in this paper showed that the iron-based alloy with the content of carbon of 0.57 % (wt.), silicon of 0.28 % (wt.) and manganese of 0.86 % (wt.)) had the superior microstructure and physical properties. It was determined that after a number of crystallization and phase transformation the alloy phase structure includes two phases: a-iron and cement magnesium dopingFe2.7Mn0,3C. For the first time using the method quasi-chemistry received an expression of the free energy of a solid solution α-iron alloyed with silicon and magnesium, and determined the solubility limit of carbon, manganese and silicon. In δ-iron may dissolve to 0.09% (wt.) carbon, manganese up to 3.5% (wt.), silicon – 0.25% (wt.). The maximum content in α-iron can reach: carbon – 0.017% (wt.), manganese – 21% (wt.), silicon – 1.3% (wt.).

Downloads

Download data is not yet available.

References

Z. Zongy, and S. Rolf, Journal of Alloys and Compounds. 363, 202 (2004), https://doi.org/10.1016/S0925-8388(03)00462-6.

P. Presoly, G. Xia, P. Reisinger, and C. Bernhard, Berg Huettenmaenn Monatsh, 159, 430 (2014), https://doi.org/10.1007/s00501-014-0306-5

J. Miettinen, V.-V. Visuri, and T. Fabritius, Thermodynamic description of the Fe–Al–Mn–Si–C system for modelling solidification of steels, Acta Universitatis Ouluensis C Technica, 704, (University of Oulu, Finland, 2019). pp. 242, http://jultika.oulu.fi/files/isbn9789526222516.pdf.

D. Djurovic, B. Hallstedt, J. Appen, and R. Dronskowski, Calphad, 35(4), 479 (2011). https://doi.org/10.1016/j.calphad.2011.08.002.

W.S. Zheng, X.G. Lu, Y.L. He, and L. Li, J. Iron Steel Res. Int. 24, 190 (2017), https://doi.org/10.1016/S1006-706X(17)30027 4

P. Głowacz, M. Tenerowicz-Żaba, M. Sułowski, and J. Konstanty, International Journal “NDT Days”, II(3), 300 (2019), https://www.bg-s-ndt.org/journal/vol2/JNDTD-v2-n3-a08.pdf.

O.A. Bannykh, and M.E. Drytsa, Диаграммы состояния двойных и многокомпонентных систем на основе железа [Phase Diagrams of Binary and multicomponent Systems based on of the iron: Handbook] (Metallurgiya, Moscow, 1986), pр. 439. (in Russian)

N.P. Lyakishev, Диаграммы состояния двойных металлических систем: Справочник [Phase Diagrams of Binary Metal Systems: Handbook], (Mashinostroenie, Moscow, 2001), pp. 498. (in Russian)

E.G. Hoel, in: Infacon VII, (Trondheim, Norway, 1995), pp. 601, https://www.pyrometallurgy.co.za/InfaconVII/601-Hoel.pdf.

I. Ohnuma, Sh. Abe, Sh. Shimenouchi, T. Omori, R. Kainuma, and K. Ishida, ISIJ International, 52(4), 540 (2012). https://doi.org/10.2355/isijinternational.52.540.

P. Presoly, J. Six, and C. Bernhard, Materials Science and Engineering, 119, 012013-1 (2016). https://doi.org/10.1088/1757-899X/119/1/012013.

S.V. Tverdokhlebova,Vіsnyk Dnіpropetrovskogo nacіonalnogo unіversytetu, serіja Fіzyka, Radіoelektronіka, 14(12/1), 100 104 (2007), http://www.vdnu.narod.ru/v14/pdf/s26_14.pdf. (in Ukrainian)

M.P. Shaskolskaya, Кристаллография [Crystallography], (Vyisshayashkola, Moscow, 1984), pp. 376. (in Russian)

E. Vincent, C.S. Becquart, and C. Domain, Journal of Nuclear Materials, 351, 88 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.018.

N.Yu. Filonenko, O.S. Baskevych, V.V. Soboliev, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 74 (2012), http://nv.nmu.org.ua/index.php/ru/component/jdownloads/finish/34-04/528-2012-4-filonenko/0. (in Ukrainian)

S.Y.P. Allain, S. Gaudez, G. Geandier, J.C. Hell, M. Gouné, F. Danoix, M. Soler, S. Aoued, and A. Poulon-Quintin, Mater. Sci. Eng. A, 710, 245 (2018), https://doi.org/10.1016/j.msea.2017.10.105.

Y.P. Sébastien, S. Aoued, A. Quintin-Poulon, M. Gouné, F. Danoix, J. Hell, M. Bouzat, and M. Soler, Materials, 11(7), 1087 (2018), https://doi.org/10.3390/ma11071087.

Published
2020-11-20
Cited
How to Cite
Filonenko, N., Babachenko, A., Kononenko, G., & Domina, E. (2020). Solubility of Carbon, Manganese and Silicon in α-Iron of Fe-Mn-Si-C Alloys. East European Journal of Physics, (4), 90-94. https://doi.org/10.26565/2312-4334-2020-4-12