Research and Development of Novel Materials for Accident Tolerant Fuel Cladding of Nuclear Reactors
Abstract
The paper describes the challenges and worldwide scientific studies aimed for the manufacturing of the fuel elements claddings tolerant to a loss of coolant accidents (Fukushima NPP, March 2011, Japan) for water-cooled reactors. The main research results obtained at NSC KIPT on the development of materials for fuel element claddings, tolerant to accidents with loss of coolant, are given. The structure and properties of the developed vacuum-arc chromium coatings were investigated. It is shown, that these coatings can be used as protective element for existing fuel claddings, made of zirconium alloys, in light-water reactors of the PWR and BWR types. Alloyed SiC-based ceramic was developed to replace zirconium-based fuel claddings. It has been established that doping of 0.5 wt% Cr into SiC leads to an increase in the ability to resist the formation of cracks (crack resistance) by 25 – 30%. The effect of Cr alloying on the corrosion resistance of SiC ceramics under conditions, simulating the medium of the first circuit of the VVER-1000 reactor, is analyzed. It was established that doping of even a small amount of Cr leads to a slowdown in corrosion processes in SiC ceramics. In order to create new material for fuel elements claddings Fe-Cr-Al-based alloys with the doping of alloying elements (Y, Zr and Mo) were also developed and studied. Obtained alloys showed high mechanical properties and resistance to high-temperature oxidation.
Downloads
References
M. Holt, R.J. Campbell, and M.B. Nikitin, Fukushima Nuclear Disaster, (Congressional Research Service, 2012), pp. 12, https://fas.org/sgp/crs/nuke/R41694.pdf
S.J. Zinklea, K.A.Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, Journal of Nuclear Materials, 448, 374-379 (2014), https://doi.org/10.1016/j.jnucmat.2013.12.005.
B.-S. Shannon, Nuclear News, 57, 83-91 (2014), https://doi.org/10.2172/1122119.
L.J. Ott, K.R. Robb, D. Wang, Journal of Nuclear Materials, 448, 520-533 (2014), https://doi.org/10.1016/j.jnucmat.2013.09.052.
F. Goldner, Development Strategy for Advanced LWR Fuels with Enhanced Accident Tolerance, (US Department of Energy, 2012), pp. 15, https://pdfs.semanticscholar.org/1b46/39a7109a0b27791662c802743c4798c0b44f.pdf.
Y.-H. Koo, J.-H. Yang, J.-Y. Park, K.-S. Kim, H.-G. Kim, D.-J. Kim, Y.-I. Jung, and K.-W. Song, Nuclear technology, 186(2), 295-304 (2014), https://doi.org/10.13182/NT13-89.
B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, and J.R. Keiser, Journal of Nuclear Materials, 440, 420-427 (2013), https://doi.org/10.1016/j.jnucmat.2013.05.047.
K.A. Terrani, Journal of Nuclear Materials, 501, 13-30 (2018), https://doi.org/10.1016/j.jnucmat.2017.12.043.
H.A. Mohd, and R. Othman, Advanced Materials Research, 402, 412-420 (2012), https://doi.org/10.4028/www.scientific.net/AMR.402.412.
T. Amano, ECS Transactions, 25, 3-19 (2010), https://doi.org/10.1149/1.3315791.
E.J. Opila, J. Am. Ceram. Soc. 86(8), 1238-1248 (2003), https://doi.org/10.1111/j.1151-2916.2003.tb03459.x.
Y. Lee, J.I. Lee, and H.C. No, NET, 49, 1031-1043 (2017), https://doi.org/10.1016/j.net.2017.03.012.
C. Tang, M. Stueber, H.J. Seifert, and M. Steinbrueck, Corros. Rev. 35, 141-165 (2017), https://doi.org/10.1515/corrrev-2017-0010.
J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D, Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, and K. Nimishakavi, Nucl. Eng. Technol. 50(2), 223-228 (2018), https://doi.org/10.1016/j.net.2017.12.004.
V.A. Belous, P.N. V'jugov, A.S. Kuprin, S.A. Leonov, G.I. Nosov, V.D. Ovcharenko, L.S. Ozhigov, et al, PAST, 84(2), 140-143 (2013), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_2/article_2013_2_140.pdf. (in Russian)
L.S. Ozhigov, V.A. Belous, V.I. Savchenko, G.I. Nosov, V.D. Ovcharenko, G.N. Tolmachova, A.S. Kuprin, and V.S. Goltvyanitsa, PAST, 108(2), 168-172 (2017), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2017_2/article_2017_2_168.pdf.
P.I. Stoev, V.A. Belous, V.N. Voevodin, A.S. Kuprin, S.A. Leonov, V.D. Ovcharenko, M.A. Tihonovskij, V.M. Horoshih, PAST, 99(5), 87-97 (2015), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_5/article_2015_5_87r.pdf. (in Russian)
A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, G.N. Tolmachova, P.N. V’ygov, PAST, 89(1), 126-132 (2014), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2014_1/article_2014_1_126.pdf.
А.S. Kuprin, V.А. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, and P.N. V'yugov, Journal of Nuclear Materials, 465, 400-406 (2015), https://doi.org/10.1016/j.jnucmat.2015.06.016.
A.S. Kuprin, V.A. Belous, V.V. Bryk, R.L. Vasilenko, V.N. Voyevodin, V.D. Ovcharenko, G.N. Tolmachova, et al, PAST, 96(2), 111-118 (2015), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_2/article_2015_2_111.pdf.
G.D. Tolstolutskaya, I.E. Kopanetz, V.V. Ruzhytskiy, V.A. Bilous, A.S. Kuprin, V.D. Ovcharenko, R.L. Vasilenko, and S.A. Leonov, PAST, 2015, 96(2), 119-123 (2015), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_2/article_2015_2_118.pdf.
I.E. Kopanetz, G.D. Tolstolutskaya, A.V. Nikitin, V.A. Belous, A.S. Kuprin, V.D. Ovcharenko, and R.L. Vasilenko, PAST, 99(5), 81-86 (2015), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_5/article_2015_5_81.pdf.
A.S. Kuprin, V.A. Belous, V.N. Voyevodin, R.L. Vasilenko, V.D. Ovcharenko, G.D.Tolstolutskaya, E. Kopanets, and V. Kolodiy, Journal of Nuclear Materials, 510, 163-167 (2018), https://doi.org/10.1016/j.jnucmat.2018.07.063.
Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Sneada, Journal of Nuclear Materials, 448, 448-476 (2014), https://doi.org/10.1016/j.jnucmat.2013.06.040.
O.A. Ageev, A.E. Beljaev, N.S. Boltovec, V.S. Kiselev, R.V. Konakova, A.A. Lebedev, V.V. Milenin, et al, Карбид кремния: технология, свойства, применение [Silicon carbide: technology, properties, applications], (Kharkiv, ISMA, 2010), рp. 532, http://isp.kiev.ua/images/Institute/lab33/Statti/SiCtechnologyPropertiesApplication.pdf. (In Russian)
H.-W. Yu, P. Fitriani, S. Lee, J.-Y. Park, and D.-H. Yoon, Ceramics International, 41(6), 7890-7896 (2015), https://doi.org/10.1016/j.ceramint.2015.02.127.
Y. Katoh, A. Kohyama, T. Nozawa, and M. Sato, Journal of Nuclear Materials, 329-333, 587-591 (2004), https://doi.org/10.1016/j.jnucmat.2004.04.157.
V. Voyevodin, S. Sayenko, K. Lobach, R. Tarasov, A. Zykova, Ye. Svitlychnyi, A. Surkov, et al, PAST, 108(2), 97-102 (2017), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2017_2/article_2017_2_97.pdf.
K. Lobach, Y. Kupriiyanova, I. Kolodiy, S. Sayenko, V. Shkuropatenko, V. Voyevodin, A. Zykova, et al, Functional Materials, 25(3), 496-504 (2018), https://doi.org/10.15407/fm25.03.496.
K.V. Lobach, S.Yu. Sayenko, V.А. Shkuropatenko, V.М. Voyevodin, H.V. Zykova, V.А. Zuyok, A.О. Bykov, et al, Materials Science, 55(5), 672-682 (2020), https://doi.org/10.1007/s11003-020-00358-5.
D.O. Moskovskikh, Ph.D. Thesis, Получение субмикронного порошка карбида кремния и наноструктуированной керамики не его основе [Manufacturing of submicron silicon carbide powder and nanostructured ceramics on its basis], National University of Science and Technology MISiS, 2015. (In Russian)
S. Kondo, M. Lee, T. Hinoki, Y. Hyodo, and F. Kano, Journal of Nuclear Materials, 464, 36-42 (2015), https://doi.org/10.1016/j.jnucmat.2015.04.034.
V.A. Lavrenko, and Yu.G. Gogotsi, Коррозия конструкторской керамики [Corrosion of engineering ceramics], (Metallurgiya, Moscow, 1989), рp. 199. (In Russian)
S.S. Raiman, P. Doyle, C. Ang, Y. Katoh, and K.A. Terrani, Corrosion, 75(2), 217 (2019), https://doi.org/10.5006/2997.
H. Hirayama, T. Kawakubo, A. Goto, and T. Kaneko, J. Am. Ceram. Soc. 72, 2049-2053 (1989), https://doi.org/10.1111/j.1151-2916.1989.tb06029.x.
E.J. Opila, N.S. Jacobson, D.L. Myers, E.H. Copland, The Journal of The Minerals, Metals & Materials Society, (TMS). 58(1), 22-28 (2006), https://doi.org/10.1007/s11837-006-0063-3.
Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, and H. Abe, Nuclear Engineering and Design, 316, 131-150 (2017), https://doi.org/10.1016/j.nucengdes.2017.02.031.
K.A. Terrani, B.A. Pint, Y.-J. Kim , K.A. Unocic, Y. Yang, C.M. Silva, H.M. Meyer, and R.B. Rebak, Journal of Nuclear Materials, 479, 36-47 (2016), https://doi.org/10.1016/j.jnucmat.2016.06.047.
В.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, Metallurgical and Materials Transactions E, 2, 190-196 (2015), https://doi.org/10.1007/s40553-015-0056-7.
X. Wu, T. Kozlowski, and J.D. Hales, Annals of Nuclear Energy, 85, 763-775 (2015), https://doi.org/10.1016/j.anucene.2015.06.032.
K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, and L.L. Snead, Journal of Nuclear Materials, 465, 746 – 755 (2015), https://doi.org/10.1016/j.jnucmat.2015.06.023.
I I.V. Kolodiy, V.A. Belous, M.A. Bortnitskaya, R.L. Vasilenko, V.N. Voyevodin, V.I. Kovalenko, A.S. Kuprin, et al, Functional materials, 27(1), 79-86 (2020), https://doi.org/10.15407/fm27.01.79.
A. Leyland, and A. Matthews, Wear, 246, 1-11 (2000), https://doi.org/10.1016/S0043-1648(00)00488-9.
J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol. 154, 304-313 (2002), https://doi.org/10.1016/S0257-8972(01)01714-5.
Copyright (c) 2020 Kostiantyn V. Lobach, Oleksandr S. Kuprin, Sergiy Yu. Sayenko, Victor M. Voyevodin, Igor V. Kolodiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).