SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD

  • V. M. Kuklin V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0000-0002-0310-1582
  • D. N. Litvinov V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0000-0002-1616-7804
  • S. M. Sevidov V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • A. E. Sporov V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine
Keywords: oscillator, nonlinearity, synchronization, energy exchange

Abstract

In this paper, the self-consistent model was considered, consisting of a system of oscillators, the coupling between them was assumed to be integral (due to the fields formed as a result of their co-radiation). With the help of this model, the features of synchronization by waves of finite amplitude of a system of oscillators were refined, the initial phase values of which are random. The effect of nonlinearity, in particular, due to the change in the mass of the oscillator due to relativistic effects, was taken into account. It was shown that the nonlinearity does not violate the nature of the energy exchange between the wave and the oscillator system, leading only to a slight decrease in the efficiency of such an exchange.

Downloads

Download data is not yet available.

Author Biographies

V. M. Kuklin, V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine
D. N. Litvinov, V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine
S. M. Sevidov, V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine
A. E. Sporov, V.N. Karazin Kharkiv National University, School of Computer Sciences Svobody Sq. 4, 61022, Kharkiv, Ukraine

References

1. Arnold V.I. Matematicheskie metody klassicheskoy mehanini [Mathematical Methods of Classical Mechanics.]. - М.: Nauka, 1979. – 432p. (in Russian)

2. Pikovsky A.S., Rosenblum M.G., Kurts Yu. Sinhronizacia. Fundamentaloe nelineinoe yavlenie [Synchronization. A fundamental nonlinear phenomenon.]. – M.: Tehnosphera, 2003. – 508p. (in Russian)

3. Osipov G.V., Polovinkin A.V. Sinhronizacia vneshnim periodichezkim vozdeistviem [Synchronization with external periodic impact]. – N.Novgorod: NNGU, 2005. - 78p. (in Russian)

4. Anishenko B.S., Astahov V.V., Vadivasova T.E., Strelkova G.I., Sinhronizacia reguliarnyh, hartichezkih i stohasticheskih kolebaniy [Synchronization of regular, chaotic and stochastic oscillations.]. – M.-Izhevsk: Institut komputernyh issledovaniy, 2008. – 144 p. (in Russian)

5. Kapitsa P.L. Mayatnik s vibriruyushchim podvesom [Pendulum with vibrating suspension] // Uspekhi Fizicheskikh Nauk. - 1951. - Vol.44. - P.7 – 20. (in Russian)

6. Chason R. Suppresion of chaos by selective resonant parametric perturbations // Phys. Rev. - 1995. - Vol. E51. - P.761-76.

7. Il'inskii Yu.A., Maslova N.S. Classical analog of superradiance in a system of interacting nonlinear oscillators // Zh. Eksp. Teor. Fiz. – 1988. – Vol.91. – No.1. – P.171-174.
Published
2017-05-13
Cited
How to Cite
Kuklin, V. M., Litvinov, D. N., Sevidov, S. M., & Sporov, A. E. (2017). SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD. East European Journal of Physics, 4(1), 75-84. https://doi.org/10.26565/2312-4334-2017-1-07