Thermodynamics of the Fermi Gas in a Quantum Well

  • Yu. M. Poluektov National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str.,61108 Kharkov, Ukraine
  • A. A. Soroka National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str.,61108 Kharkov, Ukraine
Keywords: Fermi particle, quantum well, thermodynamic functions, low-dimensional systems, equation of state, heat capacity, compressibility


For the ideal Fermi gas that fills a quantum well confined by two parallel planes, there are calculated the thermodynamic characteristics in general form for arbitrary temperatures, namely: the thermodynamic potential, energy, entropy, equations of state, heat capacities and compressibilities. The distance between planes is considered as an additional thermodynamic variable. Owing to the anisotropy, the pressure of the Fermi gas along and transverse to the planes is different, so that the system is characterized by two equations of state and a set of different heat capacities. Limiting cases of low and high temperatures are considered. The temperature dependencies of the entropy and heat capacities at low temperatures remain linear, just as in the volume case, and their dependencies on the chemical potential and density undergo jumps at the beginning of the filling of new discrete levels. It is shown that the behavior of thermodynamic quantities with the distance between plates can be either oscillating or monotonic, depending on what quantity is assumed to be fixed: the volume or surface density. For high temperatures the corrections to thermodynamic quantities are obtained, which are proportional to the ratio of the thermal de Broglie wavelength to the distance between planes.


Download data is not yet available.

Author Biography

Yu. M. Poluektov, National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str.,61108 Kharkov, Ukraine


Ando T., Fowler A.B., Stern F. Electronic properties of two-dimensional systems // Rev. Mod. Phys. − 1982. − Vol. 54. − P. 437-672.

Komnik Y.F. Physics of metal films. − Moscow: Atomizdat, 1979. − 264 p. (in Russian)

Dragunov V.P., Neizvestnyj I.G., Gridchin V.A. Fundamentals of nanoelectronics. − Moscow: Fizmatkniga, 2006. − 496 p. (in Russian)

Vagner I.D. Thermodynamics of two-dimensional electrons on Landau levels // HIT J. of Science and Engineering A. − 2006. − Vol. 3. − P. 102-152.

Freik D.M., Kharun L.T., Dobrovolska A.M. Quantum-size effects in condensed systems. Scientific and historical aspects // Phys. and Chem. of Solid State. − 2011. − Vol. 12. − P. 9-26.

Landau L.D., Lifshitz E.M. Statistical physics, Vol. 5. − Oxford: Butterworth-Heinemann, 1980. − 544 p.

Shaginyan V.R., Popov K.G. Strongly correlated Fermi-systems: theory versus experiment // Nanostuctures. Mathematical physics and modeling. − 2010. − Vol. 3. − P. 5-92.

Landau L.D. The theory of a Fermi liquid // Sov. Phys. JETP. − 1957. − Vol. 3. − P. 920-925.

Pines D., Nozières P. The theory of quantum liquids, Vol. I. − New York: Benjamin, 1966. − 149 p.

Migdal A.B. Theory of finite Fermi systems and applications to atomic nuclei. − Moscow: Nauka, 1983. − 432 p. (in Russian).

Tomonaga S. Remarks on Bloch’s method of sound waves applied to many-fermion problems // Progr. Theor. Phys. − 1950. − Vol. 5. − P. 544-569.

Luttinger J.M. An exactly soluble model of a many-fermion fystem // J. Math. Phys. − 1963.− Vol. 4. − P. 1154-1162.

Fröhlich H. Die spezifische wärme der elektronen kleiner metallteilchen bei tiefen temperaturen // Physica. − 1937. − Vol. 4. − 406-412. (in German)

Lifshits I.M., Kosevich A.M. On the theory of magnetic susceptibility of thin metal layers at low temperatures // DAN SSSR. − 1953. − Vol. XCI (4). − P. 795-798.

Lifshits I.M., Kosevich A.M. On oscillations of thermodynamic quantities for degenerate Fermi gas at low temperatures // Izv. AN SSSR, Ser. Fiz. − 1955. − Vol. 19 (4). − P. 395-403.

Poluektov Yu.M. Conditions of existence of oscillatory phenomena in an electron gas // Russ. Phys. J. − 2008. − Vol. 51. − P. 568-577.

Abramowitz M., Stegun I. (Editors), Handbook of mathematical functions. − Moscow: Nauka, 1979. − 832 p.

How to Cite
Poluektov, Y. M., & Soroka, A. A. (2017). Thermodynamics of the Fermi Gas in a Quantum Well. East European Journal of Physics, 3(4), 4-21.