PHYSICAL ASPECTS OF VACUUM-ARC COATING DEPOSITION

  • I. I. Aksenov National Science Center "Kharkiv Institute of Physics and Technology"
  • D. S. Aksyonov National Science Center "Kharkiv Institute of Physics and Technology"

Abstract

The brief analytical review of literary data concerning the processes which are a physical basis of vacuum-arc coating deposition technology is presented. The phenomena responsible for formation of films by condensation of substance from plasma of arc discharge in vacuum or in a gaseous ambience of low pressure are described.. Interaction of metal plasma with a gas target, a substrate and other surfaces of working chamber, the processes of nucleation and condensate growth, influence of energetic parameters of a deposition process (kinetic and potential energy of metal ions, activation degree and sort of the gas ) on properties of condensates and near-surface layers of the substrate are described.

Downloads

Download data is not yet available.

Author Biography

I. I. Aksenov, National Science Center "Kharkiv Institute of Physics and Technology"

References

.Colligon J.S. Energetic condensation: processes, properties, and products // J. Vac.Sci. Technol. - 1995. – Vol.A 13. – P.1649 – 1657.

Anders André. Cathodic Arcs – From Fractal Spots to Energetic Condensation. – Springer, 2008. – 540 p.

Greene J.E., Nucleation, film growth, and microstructural evolution // in Handbook of Deposition Technologies for Films and Coatings, Bunshah, R.F., (Ed.), 2 nd ed. – NJ: Noyes, Westwood, 1994. – P. 681–739.

Hubler G.K., Sprague J.A. Energetic particles in PVD technology: particle surface interaction processes and energy-particle relationships in thin film deposition // Surf. Coat. Technol.– 1996. – Vol. 81.– P. 29–35.

Xu S., Evans B.L. Nucleation and growth of ion beam sputtered metal films // J. Mat. Sci.– 1992.– Vol. 27.– P. 3108–3117.

Gill S.P.A. Self-organised growth on strained substrates: the influence of anisotropic strain, surface energy and surface

diffusivity // Thin Solid Films.– 2003.– Vol. 423.– P. 136–145.

Petrov I., Barna P.B., Hultman L., Greene J.E. Microstructural evolution during film growth, // J. Vac. Sci. Technol. – 2003.– Vol. A 21. – P. S117–S128.

Uhlmann S., Fraunheim T., Lifshitz Y. Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon // Phys. Rev. Lett.– 1998. – Vol. 81. – P. 641–644.

Lifshitz Y., Kasai S.R., Rabalais J.W., Eckstein W. Subplantation model for film growth from hyperthermal species // Phys. Rev.– 1990.– Vol. B 41 – P. 10468–10480.

Ronning C. Ion-beam synthesis and growth mechanism of diamond-like materials // Appl. 2003 Phys. – Vol. A 77. – P 39–50.

Carlson T.A., Nestor C.W., Wasserman N., McDowell J.D. Calculated ionization potentials for multiply charges ions // Atomic Data. –1970. – No. 2. – P. 63–99.

Lide D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition. – New York: CRC Press, Boca Raton, 2000.

Burgdörfer J. and Meyer F. Image acceleration of multiply charged ions by metallic surfaces // Phys. Rev. –1993. –Vol. A 47. – P.R20–R22.

Haägg L., Reinhold C.O., Burgdörfer J. Energy gain of highly charged ions in front of LiF // J. Nucl. Instrum. Meth. Phys. Res.

–1997. – Vol. B 125. – P. 133–137.

Winter, H., Aumayr F. Interaction of slow HCI with solid surfaces // Physica Scripta. –2001. – Vol. 92. – P. 15–21.

Schenkel T., Barnes A.V., Niedermayr T.R., et al. Deposition of potential energy by slow, highly charged ions // Phys. Rev. Lett. –1999. – Vol. 83. – P. 4273–4276.

Al-Nimr M.A., Arpaci V.S. Picosecond thermal pulses in thin metal films // Appl. Phys. –1999. – Vol. 85 – P. 2517–2521.

Musil J. Hard and superhard nanocomposite coatings // Surf. Coat. Technol. –2000. – Vol.125. – P. 322–330.

Anders A., Yushkov G. Measurements of secondary electrons emitted from conductive substrates under high-current metal ion bombardment // Surf. Coat. Technol. –2001. – Vol. 136 – P. 111–116.

Kress J.D., Hanson D.E., Voter A.F., Liu C.L., Liu X.Y., Coronell D.G. Molecular dynamics simulation of Cu and Ar ion

sputtering of Cu (111) surfaces // J. Vac. Sci. Technol. –1999. – Vol. A 17. – P. 2819–2825.

Hanson D.E., Stephens B.C., Saravanan C., Kress J.D. Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces // J. Vac. Sci. Technol.– 2001.– Vol. A 19. – P. 820–825.

Movchan B.A.,Demchishin A.V. Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide // FMM – 1969.– Vol.26, No. 4. – P. 653–660.

Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings // J. Vac. Sci. Technol. – 1974.– Vol. 11.– P. 666–670.

Oettel H., Wiedemann R., Preiler S. Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation // Surf. Coat. Technol. – 1995. – Vol.74–75. P. 273–278.

Vlasveld A.C., Harris S.G., Doyle E.D., Lewis D.B., Munz W.D. Characterization and performance of partially filtered arc

TiAlN coatings // Surf. Coat. Technol. – 2002. – Vol. 149. – P. 217–223.

Brown I. G., Anders A., Anders S., et al. Plasma synthesis of metallic and composite thin films with atomically mixed substrate bonding // Nucl. Instrum. Meth. Phys. Res. B. – 1993. – Vol. 80/81. P. 1281–1287.

Anders A., Anders S., Brown I. G., Dickinson M. R., MacGill R. A. Metal plasma immersion ion implantation and deposition

using vacuum arc plasma sources // J. Vac. Sci. Technol. B. – 1994. – Vol. 12. –P. 815–820.

Strel’nitskij V.E., Aksenov I.I. DLC films. – Kharkov: “Kontrast” – 2006, 344 p.

Anders S., Callahan D. L., Pharr G. M., Tsui T. Y., Bhatia C. S. Multilayers of amorphous carbon prepared by cathodic arc deposition // Surf. Coat. Technol.– 1997.– Vol. 94/95.– P. 189–194.

Lim S. H. N.,. McCulloch D. G, Bilek M. M. M., McKenzie D. R. Minimization of intrinsic stress in titanium nitride using a

cathodic arc with plasma immersion ion implantation // J. Appl. Phys. – Vol. 93. – P. 4283–4288.

Hörling A., Hultman L., Odén M., Sjölén J., Karlsson L. Mechanical properties and machining performance of Ti Al N-coated cutting tools // Surf. Coat. Technol. – 2005. – Vol. 191. – P. 384–392.

Hörling A., Hultman L., Odén M., Sjolén J., Karlsson L. Thermal stability of arc evaporated high aluminum-content Ti Al N thinfilms // J. Vac. Sci. Technol. A. – 2002 – Vol. 20. – P. 1815–1823.

Pelletier J., Anders A. Plasma-Based Ion Implantation and Deposition. A Review of Physics, Technology, and Applications // IEEE transactions on plasma science. – 2005. – VOL. 33, No. 6. – P. 1945–1959.

Bilek M. M. M., Tarrant R. N., McKenzie D. R., Lim S. H. N., McCulloch D. G. Control of stress and microstructure in cathodic arc deposited films // IEEE Trans. Plasma Sci. – 2003.– Vol. 31, No. 5.– P. 939–944.

Bilek M. M. M.,. McKenzie D. R, Moeller W. Use of low energy and high frequency PBII during thin film deposition to

achieve relief of intrinsic stress and microstructural changes // Surf. Coat. Technol. –2004. – Vol. 186. – P. 21–28.

Anders A. Yushkov G. Y. Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields // J. Appl. Phys. – 2002. – Vol. 91, – P. 4824–4832.

McKenzie D. R Bilek M. M. M. Thermodynamic theory for preferred orientation in materials prepared by energetic condensation // Thin Solid Films. – 2001. – Vol. 382. – P. 280–287. 39 Physical aspects of vacuum-arc coating deposition EEJP Vol.1 No.3 2014

Coeur F. Le, Lagarde T., Pelletier J., Arnal Y., Burke R. Distributed electron cyclotron resonance plasma immersion for large area ion implantation // Rev. Sci. Instrum.. – 1998. – Vol. 69. – P. 831–836.

Goebel D. M, Adler R. J., Beals D. F., Reass W. A., Pulser technology // in Handbook of Plasma Immersion Ion Implantation and Deposition, Anders A., (ed). – New York: Wiley. – 2000. – P. 467–513.

Collins G., Hutchings R., Short K. T., Tendys J., van der Valk C. H. Development of a plasma immersion ion implanter for the surface treatment // Surf. Coat. Technol., vol. 84, pp. 537–543.

Aksenov I.I. Andreev, Bren’ V.G. et al. Pokrytiya, poluchennye kondensatsiei plazmennyrh potokov v vakuume (sposob kondensatsii s ionnoi bombardirovkoi) // UFZh. – 1979. – T. 24, No. 4. – P. 515–525.

Hanson D.E., Stephens B.C., Saravanan C., Kress J.D. Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces // J. Vac. Sci. Technol. – 2001. – Vol. A 19. – P. 820–825.

Aksenov I.I., Belous V.A., Padalka V.G., Khoroshikh V.M. Poluchenie pokrytii na osnove okisi alyuminiya iz separirovannogo potoka plazmy vakuumnoi dugi // Fizika i khimiya obrabotki materialov. – 1977. – No. 6. – P. 89–92.

Anders A., (ed.) Handbook of Plasma Immersion Ion Implantation and Deposition. – New York: John Wiley & Sons. – 2000.

Conrad J.R., Radtke J.L., Dodd R.A., Worzala F.J., Tran N.C. Plasma source ion-implantation technique for surface

modification // J. Appl. Phys. – 1987. – Vol. 62. – P.4591–4596.

Brown I.G., Godechot X., Yu K.M. Novel metal ion surface modification technique // Appl. Phys. Lett. – 1991. – Vol. 58. –

P. 1392–1394.

Anders A. From plasma immersion ion implantation to deposition: a historical perspective on principles and trends // Surf. Coat. Technol. – 2002. – Vol.156. – P.3–12.

Mattox D.M. Film deposition using accelerated ions // Electrochem. Technol. – 1964. – Vol.2. – P.295–298.

Anders A., Anders S., Brown I.G., Dickinson M.R., MacGill R.A. Metal plasma immersion ion implantation and deposition

using vacuum arc plasma sources // J. Vac. Sci. Technol. – 1994. – Vol. B 12. – P. 815–820.

Bilek M.M.M., McKenzie D.R., Moeller W. Use of low energy and high frequency PBII during thin film deposition to achieve

relief of intrinsic stress and microstructural changes // Surf. Coat. Technol. – 2004. – Vol. 186. – P. 21–28.

Bilek M.M.M., Tarrant R.N., McKenzie D.R., Lim S.H.N., McCulloch D.G. Control of stress and microstructure in cathodic arc deposited films // IEEE Trans. Plasma Sci. – 2003. – Vol. 31. – P. 939–944.

Mesyats G. A. Cathode phenomena in a vacuum discharge. – M.: Nauka, 2000.

Kühn M., Richter F. Characteristics in reactive arc evaporation // Surf. Coat. Technol. – 1997. – Vol 89. – P. 16–23.

Aksenov I.I., Antuf’yev Yu.P., Bren’ V.G., Khoroshikh V.G. Vliyanie davleniya gaza v reaktsionnom obyeme na protsess

sinteza nitridov pri kondensatsii plazmy metallov // Khimiya vysokikh energyi. – 1986. – Vol. 20.– No.1. – P. – 82–86.

Aksenov I.I., Khoroshikh V.M., Lomino N.S., Ovcharenko V.D., Zadneprovskij Yu.A. Transformation of axial vacuum-arc

plasma flows into radial streams and their use in coating deposition // IEEE Trans. Plasma Sci. – 1999. – Vol. 27. - No.4. – P.1026–1029.

Aksenov I.I., Khoroshikh V.M. A low-pressure steady-state arc with a positive anode potential drop and its use in coating

processes // Proc 18 ISDEIV, The Netherland, Eindhoven. – 1998. – Vol. 2. – P. 577–580.

Khoroshikh V.M., Leonov S.A., Belous V.A. Vliyanie geometrii podlozhki na protsess kondensatsii ionno-plazmennykh pokrytij // VANT. “Vacuum, chistye metally, sverkhprovodniki”. – 2008. – Vol. 37. – No.1. – P. 72–76.

Khoroshikh V.M., Leonov S.A. O kharaktere vliyaniya razlichnykh gazov na protsess kondensatsii pokrytij iz plazmy

vakuumnoj dugi // Fizicheskaya inzheneriea poverkhnosti. – 2009. – Vol. 7. – No.3. – P. 268–272.

Leonov S.A., Khoroshikh V.M. Osazhdenie ionno-plazmennykh pokrytii iz khaotizirovannykh potokov plazmy vakuumnoj dugi // Preprint KhFTI 2013-4. – Kharkov: NNTs KhFTI, 2013. – 56 p.

Published
2014-09-04
Cited
How to Cite
Aksenov, I. I., & Aksyonov, D. S. (2014). PHYSICAL ASPECTS OF VACUUM-ARC COATING DEPOSITION. East European Journal of Physics, 1(3), 22-39. https://doi.org/10.26565/2312-4334-2014-3-02