Quantum-Corrected Thermodynamics of AdS-Rindler Black Holes
Abstract
We investigate the thermodynamic properties and stability of hyperbolic (AdS–Rindler) black holes, emphasizing the effects of non perturbative quantum correction. Using standard thermodynamic formulations alongside the Poincar´e disk method, we compute key quantities including mass, Hawking temperature, entropy, and heat capacity. To account for quantum gravitational effects, we introduce an exponential correction to the Bekenstein–Hawking entropy and systematically derive the modified thermodynamic parameters. While the corrected entropy yields consistent adjustments, the heat capacity exhibits nontrivial behavior, leading to narrower and more gradual stable regions (Δr(d)) for each dimension d. Moreover, the smoothing of sharp entropy variations near rh=1 emphasizes how horizon geometry governs the impact of quantum corrections. This study provides the novel systematic identification of stable regions before and after exponential corrections of (AdS–Rindler) black holes, offering new insights into the interplay of geometry, dimensionality, and quantum effects in black hole thermodynamics.
Downloads
References
J. D. Bekenstein, ”Black holes and entropy,” Phys. Rev. D, 7, 2333 (1973). https://doi.org/10.1103/physrevd.7.2333
S. W. Hawking, ”Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199 (1975). https://doi.org/10.1007/bf02345020
J.M. Bardeen, B. Carter, and S.W. Hawking, ”The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973). https://doi.org/10.1007/bf01645742
D.N. Page, ”Information in black hole radiation,” Phys. Rev. Lett. 71, 3743 (1993). https://doi.org/10.1103/physrevlett.71.3743
A. Strominger, and C. Vafa, ”Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B, 379, 99 (1996). https://doi.org/10.1016/0370-2693(96)00345-0
J.M. Maldacena, ”The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998). https://doi.org/10.4310/atmp.1998.v2.n2.a1
E. Witten, ”Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998). https://doi.org/10.4310/atmp.1998.v2.n2.a2
S.N. Gashti, M.A.S. Afshar, M.R. Alipour, I. Sakallı, B. Pourhassan, and J. Sadeghi, ”Assessing WGC Compatibility in ModMax Black Holes via Photon Spheres Analysis and WCCC Validation,” arXiv preprint arXiv, 2504, 11939 (2025). https://doi.org/10.48550/arXiv.2504.11939
S.N. Gashti, B. Pourhassan, and I. Sakallı, ”Thermodynamic topology and phase space analysis of AdS black holes through non-extensive entropy perspectives,” The European Physical Journal C, 85(3), 305 (2025). https://doi.org/10.1140/epjc/s10052-025-14035-x
A.B. Brzo, S.N. Gashti, B. Pourhassan, and S. Beikpour, ”Thermodynamic Topology ofAdS Black Holes withinNon-Commutative Geometry and Barrow Entropy,” Nuclear Physics B, 1012, 116840 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116840
B. Pourhassan, M. Faizal, S. Upadhyay, and L. Al Asfar, ”Thermal Fluctuations in a Hyperscaling Violation Background,” Eur. Phys. J. C, 77, 555 (2017). https://doi.org/10.1140/epjc/s10052-017-5125-x
S. Upadhyay, B. Pourhassan, and H. Farahani, ”P-V criticality of first-order entropy corrected AdS black holes in massive gravity,” Phys. Rev. D, 95, 106014 (2017). https://doi.org/10.1103/PhysRevD.95.106014
B. Pourhassan, ”Exponential corrected thermodynamics of black holes,” J. Stat. Mech. 2107, 073102 (2021). https://doi.org/10.1088/1742-5468/ac0f6a
R.B. Wang, S.J. Ma, L. You, Y.C. Tang, Y.H. Feng, X.R. Hu, and J.B. Deng, ”Thermodynamics of AdS-Schwarzschild-like black hole in loop quantum gravity,” The European Physical Journal C, 84(11), 1161 (2024). https://doi.org/10.1140/epjc/s10052-024-13505-y
J.-P. Ye, Z.-Q. He, A.-X. Zhou, Z.-Y. Huang, and J.-H. Huang, ”Shadows and photon rings of a quantum black hole,” Physics Letters B, 851, 138566 (2024). https://doi.org/10.1016/j.physletb.2024.138566
F.G. Menezes, H.A. Borges, I.P.R. Baranov, and S. Carneiro, ”Thermodynamics of effective loop quantum black holes,” arXiv preprint arXiv, 2504, 06964 (2025). https://doi.org/10.48550/arXiv.2504.06964
L. You, R.-B.Wang, Y.-C. Tang, J.-B. Deng, and X.-R. Hu, ”Thermal chaos of quantum-corrected-AdS black hole in the extended phase space,” The European Physical Journal C, 84, 11 (2024). https://doi.org/10.1140/epjc/s10052-024-13417-x
B. Hamil, B. C. L¨utf¨uo˘glu, and L. Dahbi, ”Quantum-corrected Schwarzschild AdS black hole surrounded by quintessence: Thermodynamics and shadows,” Modern Physics Letters A, 39(33n34), 2450161 (2024). https://doi.org/10.1142/s021773232450161x
B. Tan, ”Thermodynamics of high order correction for Schwarzschild-AdS black hole in non-commutative geometry,” Nuclear Physics B, 1014, 116868 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116868
R. Emparan, and J.M. Mag´an, ”Tearing down spacetime with quantum disentanglement,” Journal of High Energy Physics, (3), 078 (2024). https://doi.org/10.1007/jhep03(2024)078
P.Z. He, and H.Q. Zhang, ”Holographic timelike entanglement entropy from Rindler method,” Chinese Physics C, 48(11), 115113 (2024). https://doi.org/10.1088/1674-1137/ad57a8
X.X. Ju, B.H. Liu, W.B. Pan, Y.W. Sun, and Y.T. Wang, ”Squashed entanglement from generalized Rindler wedge,” Journal of High Energy Physics, 9, 1-48 (2025). https://doi.org/10.1007/jhep09(2025)006
Q. Wen, M. Xu, and H. Zhong, ”Timelike and gravitational anomalous entanglement from the inner horizon,” SciPost Physics, 18(6), 204 (2025). https://doi.org/10.21468/scipostphys.18.6.204
R.X. Miao, ”Casimir effect and holographic dual of wedges,” Journal of High Energy Physics, 6, 1-35 (2024). https://doi.org/10.1007/jhep06(2024)084
R. Campos Delgado, ”Quantum gravitational corrections to the entropy of a Reissner–Nordstr¨om black hole,” The European Physical Journal C, 82(3), 272 (2022). https://doi.org/10.1140/epjc/s10052-022-10232-0
S. Wu, and C. Liu, ”The Quantum Corrections on Kerr-Newman Black Hole Thermodynamics by the Generalized Uncertainty Principle,” International Journal of Theoretical Physics, 59, 2681-2693 (2020). https://doi.org/10.1007/s10773-020-04468-3
H.L. Li, D.W. Song, andW. Li, ”Phase transition and entropy correction of a quantum correction black hole close to planck scale,” General Relativity and Gravitation, 51, 1-14 (2019). https://doi.org/10.1007/s10714-019-2504-7
D. Ma, T. Huo, and C. Liu, ”Thermodynamics and its Quantum Correction of Vacuum Nonsingular Black Hole,” Astrophysics, 67(4), 556-570 (2025). https://doi.org/10.1007/s10511-025-09851-8
J.J. Song, and C.Z. Liu, ”Thermodynamics in a quantum corrected Reissner–Nordstr¨om–AdS black hole and its GUP-corrections,” Chinese Physics B, 33(4), 040402 (2024). https://doi.org/10.1088/1674-1056/ad1a8a
B. Pourhassan, ”Resolving the information loss paradox from the five-dimensional supergravity black hole,” Nuclear Physics B, 976, 115713 (2022). https://doi.org/10.1016/j.nuclphysb.2022.115713
B. Pourhassan, and M. Faizal, ”Thermal Fluctuations in a Charged AdS Black Hole,” Europhysics Letters, 111, 40006 (2015). https://doi.org/10.1209/0295-5075/111/40006
S. Upadhyay, N. ul Islam, and P.A. Ganai, ”A modified thermodynamics of rotating and charged BTZ black hole,” Journal of Holography Applications in Physics, 2(1), 25-48 (2022). https://doi.org/10.1209/0295-5075/111/40006
A. Sen, ”Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates,” General Relativity and Graviton, 44(5), 1207-1266 (2012). https://doi.org/10.1007/s10714-012-1336-5
B. Pourhassan, M. Faizal, and U. Debnath, ”Effects of Thermal Fluctuations on the Thermodynamics of Modified Hayward Black Hole,” Eur. Phys. J. C, 76, 145 (2016). https://doi.org/10.1140/epjc/s10052-016-3998-8
R. Ali, R. Babar, Z. Akhtar, and A. Ovgun, ”Thermodynamics and logarithmic corrections of symmergent black holes,” Results Phys. 46, 106300 (2023). https://doi.org/10.1016/j.rinp.2023.106300
F.M. Mele, J.M¨unch, and S. Pateloudis, ”Quantum corrected polymer black hole thermodynamics: mass relations and logarithmic entropy correction,” Journal of Cosmology and Astroparticle Physics, 02, 011 (2022). https://doi.org/10.1088/1475-7516/2022/02/011
B. Pourhassan, R.C. Delgado, S. Upadhyay, H. Farahani, and H. Kumar, ”Quantum gravitational corrections to the geometry of charged AdS black holes,” Nucl. Phys. B, 1012, 116830 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116830
B. Pourhassan, X. Shi, S.S.Wani, S. Al-Kuwari, ˙I. Sakallı, N.A. Shah, M. Faizal, and A. Shabir, ”Quantum gravitational corrections to a Kerr black hole using Topos theory,” Annals of Physics, 477, 169983 (2025). https://doi.org/10.1016/j.aop.2025.169983
R.M. Wald, General Relativity, (University of Chicago Press, 1984).
S.M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison Wesley, 2004).
X. Calmet, and F. Kuipers, ”Quantum Gravitational Corrections to the Entropy of a Schwarzschild Black Hole,” Phys. Rev. D, 104(6), 066012 (2021). https://doi.org/10.1103/physrevd.104.066012
A. Chatterjee, and A. Ghosh, ”Exponential corrections to black hole entropy,” Phys. Rev. Lett. 125(4), 041302 (2020). https://doi.org/10.1103/physrevlett.125.041302
B. Pourhassan, H. Farahani, F. Kazemian, I. Sakalli, S. Upadhyay, and D.V. Singh, ”Non-perturbative correction on the black hole geometry,” Physics of the Dark Universe, 44, 101444 (2024). https://doi.org/10.1016/j.dark.2024.101444
H. Han, and B. Gwak, ”Effects of fluctuations in higher-dimensional AdS black holes,” Physical Review D, 110, 066013 (2024). https://doi.org/10.1103/physrevd.110.066013
B. Pourhassan, H. Aounallah, M. Faizal, S. Upadhyay, S. Soroushfar, Y.O. Aitenov, and S.S. Wani, ”Quantum Thermodynamics of an M2-M5 Brane System,” Journal of High Energy Physics, 05, 030 (2022). https://doi.org/10.1007/jhep05(2022)030
H. Kumar, B. Pourhassan, and I. Sakalli, ”Stabilizing Effects of Higher-Order Quantum Corrections on Charged BTZ Black Hole Thermodynamics,” Nucl. Phys. B, 1007, 116672 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116672
B. Pourhassan, I. Sakalli, and A.B. Brzo, ”Thermal Fluctuation Effects on Shear Viscosity to Entropy Ratio in Five-Dimensional Kerr-Newman Black Holes,” Eur. Phys. J. C, 85, 206 (2025). https://doi.org/10.1140/epjc/s10052-025-13893-9
R. Emparan, ”AdS/CFT duals of topological black holes and the entropy of zero-energy states,” Journal of High Energy Physics, 06, 036 (1999). https://doi.org/10.1088/1126-6708/1999/06/036
D. Ma, T. Huo, and C. Liu, ”Thermodynamics and its Quantum Correction of Vacuum Nonsingular Black Hole,” Astrophysics, 67(4), 556-570 (2024). https://doi.org/10.1007/s10511-025-09851-8
Ali O¨ vgu¨n, Reggie C. Pantig, and A´ ngel Rinco´n, ”Shadow and greybody bounding of a regular scale-dependent black hole solution,” Annals of Physics, 463, 169625 (2024). https://doi.org/10.1016/j.aop.2024.169625
J.J. Song, and C.Z. Liu, ”Thermodynamics in a quantum corrected Reissner-Nordstr¨om-AdS black hole and its GUP-corrections,” Chinese Physics B, 33(4), 040402 (2024). https://doi.org/10.1088/1674-1056/ad1a8a
Q.Q. Li, Y. Zhang, Q. Sun, C.H. Xie, and Y.L. Lou, ”Phase structure of quantum corrected charged AdS black hole surrounded by perfect fluid dark matter,” Chinese Journal of Physics, 92, 1-9 (2024). https://doi.org/10.1016/j.cjph.2024.09.001
H. Casini, M. Huerta, and R.C. Myers, ”Towards a derivation of holographic entanglement entropy,” Journal of High Energy Physics, 5, 1-41 (2011). https://doi.org/10.1007/jhep05(2011)036
I.S. Gradshteyn, and I.M. Ryzhik, Table of integrals, series, and products, Academic press, 2014).
B.P. Dolan, ”The cosmological constant and black hole thermodynamic potentials,” Class. Quantum Gravity, 28, 125020 (2011). https://doi.org/10.1088/0264-9381/28/12/125020
J. Tarrio, and S. Vandoren, ”Black holes and black branes in Lifshitz spacetimes,” J. High Energy Phys. 1109, 017 (2011). https://doi.org/10.1007/JHEP09(2011)017
Copyright (c) 2025 Aram Bahroz Brzo, Peshwaz Abdulkareem Abdoul, Behnam Pourhassan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



