Effect of Boric and Oxalic Acid on Nucleation Mechanism, Composition, Morphology and Structure of Electrodeposited Ni Films

  • Fatima Zohra Karima Hamdi Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria https://orcid.org/0000-0001-9370-7715
  • A. Rahmani Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria; Laboratory MONARIS, UMR 8233, Sorbonne Université, Paris, France
  • A. Hamdi Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
Keywords: Nickel, Electrodeposited, Additives, Boric acid, Oxalic acid, Nucleation

Abstract

Nickel thin films were electrodeposited onto copper substrates at room temperature using an aqueous electrolyte containing nickel sulfate, nickel chloride, and sodium sulfate. The effects of two additives (boric acid and oxalic acid) on the nucleation mechanism, crystallographic structure, surface morphology, and chemical composition of the resulting Ni films were systematically investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). CV analysis revealed that the presence of additives shifted the cathodic peak potentials toward more negative values, suggesting an inhibition effect on nickel reduction. Chronoamperometric studies confirmed that Ni deposition followed a three-dimensional instantaneous nucleation mode, unaffected by the additives. XRD patterns showed that all Ni films had a face-centered cubic (FCC) structure with strong (111) orientation, while SEM images indicated denser and more homogeneous surface morphology in the presence of additives. EDS analysis confirmed the presence of Ni in all samples.

 

Downloads

Download data is not yet available.

References

A. Sahlaoui, Y. Lghazi, B. Youbi, M. Ait Himi, J. Bahar, C. El Haimer, A. Aynaou, et al., Moroccan Journal of Chemistry, 11, 541 (2023). https://doi.org/10.48317/IMIST. PRSM/morjchem-v11i2.36809

F. Zhang, S. Liu, and F. Wang, RSC advances, 12, 11052 (2022). https://doi.org/10.1039/D1RA08926A

S. Elsharkawy, D. Kutyła, and P. Żabiński, Coatings, 14, 1459 (2024). https://doi.org/10.3390/coatings14111459

X. Wang, G. Wang, W. Wang, X. Liu, Y. Liu, Y. Jin, and Y. Zhang, Journal of Alloys and Compounds, 1032, 181014 (2025). https://doi.org/10.1016/j.jallcom.2025.181014

H.F. Alesary, S. Cihangir, A.D. Ballantyne, R.C. Harris, D.P. Weston, A.P. Abbott, and K.S. Ryder, Electrochimica Acta, 304, 118 (2019). https://doi.org/10.1016/j.electacta.2019.02.090

S. Umrao, J. Jeon, S.M. Jeon, Y.J. Choi, and S. Lee, Nanoscale, 9, 594 (2017). https://doi.org/10.1039/C6NR07240B

B. Abedini, N.P. Ahmadi, S. Yazdani, and L. Magagnin, Transactions of Nonferrous Metals Society of China, 30, 548 (2020). https://doi.org/10.1016/S1003-6326(20)65234-7

Y. Xu, H. Jiao, M. Wang, and S. Jiao, Journal of Alloys and Compounds, 779, 22 (2019). https://doi.org/10.1016/j.jallcom.2018.11.232

K.D.M. Abro, A. Sanou, and E.K.I. Kwa-Koff, American Journal of Physical Chemistry, 13, 1 (2024). https://doi.org/10.11648/j.ajpc.20241301.11

E. Bouabdalli, M. El Jouad, T. Garmim, A. Louardi, B. Hartiti, M. Monkade, S. Touhtouh, and A. Hajjaji, Materials Science and Engineering: B. 286, 116044 (2022), https://doi.org/10.1016/j.mseb.2022.116044.

A. Shamim, Z. Ahmad, S. Mahmood, U. Ali, T. Mahmood and Z. Nizami, Open Journal of Chemistry, 2, 16 (2019). https://www.doi.org/10.30538/psrp-ojc2019.0009

A. Rahmani, L. Remache, M. Guendouz, N. Lorrain, A. Djermane, and L. Hadjeris, Surface Review and Letters, 29, 2250039 (2021). https://doi.org/10.1142/S0218625X22500391

F. Lekmine, I. Zidani, A. Chala, and A. Gana, Journal of nano- and electronic physics, 14, 06022-1 (2022), https://doi.org/10.21272/jnep.14(6).06022

N. Guermat, W. Daranfed, I. Bouchama, and N. Bouarissa, Journal of Molecular Structure, 1225, 129134 (2021). https://doi.org/10.1016/j.molstruc.2020.129134

G. Qadr, M.I. Awad, K. Haji, J.A. Jumaa, and H.H. Abdallah, Journal of Molecular Liquids, 378, 121584 (2023). https://doi.org/10.1016/j.molliq.2023.121584

C. El Haimer, Y. Lghazi, J. Bahar, B. Youbi, M. Ait Himi, A. Ouedrhiri, A. Aynaou, and I. Bimaghra, Materials Today: Proceedings, 66, 37 (2022), https://doi.org/10.1016/j.matpr.2022.03.107

X. Fu, C. Zhan, R. Zhang, B. Wang, H. Sun, and J. Sun, Journal of Solid State Electrochemistry, 26, 2713 (2022). https://doi.org/10.1007/s10008-022-05282-z.

S. Saha, M. Johnson, F. Altayaran, Y. Wang, D. Wang, and Q. Zhang, Electrochem. 1, 286 (2020). https://doi.org/10.3390/electrochem1030019

I.M. Beker, F.B. Dejene, L.F. Koao, J.J. Terblans, S.Z. Werta, and A.U. Yimamu, Journal of Electronic Materials, 54, 6575 (2025). https://doi.org/10.1007/s11664-025-12082-4

L. Yuan, J. Chen, J. Zhang, and L. Sun, Crystals, 12, 43 (2021), https://doi.org/10.3390/cryst12010043

X. Wu, X. Zhao, P. Lin, C. Tan, C. Wang and W. Chen, Journal of Materials Research and Technology. 36, 1789-1801 (2025), https://doi.org/10.1016/j.jmrt.2025.03.212.

F.Z. Hamdi, A. Hamdi, S. Khenchoul, A. Rahmani, A. Cheriet, L. Aissani and A. Alhussein, Journal of the Indian Chemical Society. 99, 100498-100503 (2022), https://doi.org/10.1016/j.jics.2022.100498.

H. Rao, W. Li, Z. Luo, H. Liu, L. Zhu, and H. Chen, Journal of Materials Research and Technology, 30, 3079 (2024). https://doi.org/10.1016/j.jmrt.2024.04.008

R. Li, Q. Chu, and J. Liang, Rsc Advances, 5, 44933 (2015). https://doi.org/10.1039/C5RA05918F

B. Scharifker, and G. Hills, Electrochimica Acta, 28, 879 (1983). https://doi.org/10.1016/0013-4686(83)85163-9

M.R. Khelladi, L. Mentar, A. Azizi, F. Kadirgan, G. Schmerber, and A. Dinia, Applied surface science. 258, 3907-3912 (2012). https://doi.org/10.1016/j.apsusc.2011.12.060

A. Mashreghi, and H. Zare, Current Applied Physics, 16, 599 (2016). https://doi.org/10.1016/j.cap.2016.03.008

X. Cao, H. Wang, T. Liu, Y. Shi, and X. Xue, Materials, 16, 415 (2023). https://doi.org/10.3390/ma16010415

L. Mentar, Ionics, 18, 223 (2012). https://doi.org/10.1007/s11581-011-0602-y

J. Bahar, Y. Lghazi, B. Youbi, M. Ait Himi, C. El Haimer, A. Ouedrhiri, A. Aynaou, and I. Bimaghra, Materials Today: Proceedings, 66, 187 (2022). https://doi.org/10.1016/j.matpr.2022.04.445

A. El-Shaer, S. Ezzat, M.A. Habib, O.K. Alduaij, T.M. Meaz, and S.A. El-Attar, Crystals, 13, 788 (2023). https://doi.org/10.3390/cryst13050788

D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, and A.N. Tiwari, Thin Solid Films, 480, 118 (2005). https://doi.org/10.1016/j.tsf.2004.11.033

A.A. Ojo, and I.M. Dharmadasa, Coatings. 9, 370 (2019). https://doi.org/10.3390/coatings9060370

S.W. Pawar, V.A. Tabhane, P.E. Lokh, F. Khan, J. Kaur, A. Al-Ahmed, and H.M. Pathan, ES Energy & Environment, 17, 106 (2022). https://doi.org/10.30919/esee8c652

Published
2025-12-08
Cited
How to Cite
Hamdi, F. Z. K., Rahmani, A., & Hamdi, A. (2025). Effect of Boric and Oxalic Acid on Nucleation Mechanism, Composition, Morphology and Structure of Electrodeposited Ni Films. East European Journal of Physics, (4), 527-536. https://doi.org/10.26565/2312-4334-2025-4-54