On Solutions of the Killingbeck Potential and Clarifying Comments on a Related Analytical Approach

  • Fatma Zohra Khaled LPRIM, Department of Physics, University of Batna I, Batna, Algeria https://orcid.org/0009-0005-2853-2265
  • Mustafa Moumni LPRIM, Department of Physics, University of Batna I, Batna, Algeria; LPPNNM, Department of Matter Sciences, University of Biskra, Biskra, Algeria https://orcid.org/0000-0002-8096-6280
  • Mokhtar Falek LPPNNM, Department of Matter Sciences, University of Biskra, Biskra, Algeria; Faculty of Technology, University of Khenchela, Khenchela, Algeria https://orcid.org/0000-0002-0466-9559
Keywords: Schrödinger equation, Killingbeck potential, Yukawa potential, Serie expansion method, Heun equation

Abstract

The work presents analytical solutions to the Schrödinger equation for the Killingbeck potential, a hybrid model combining harmonic, linear, and Coulombic terms, as well as an approximate model of Yukawa-type potentials. The radial Schrödinger equation is solved by means of the series expansion method, thus yielding the exact expressions of both bound-state solutions and eigen-functions for systems such as quarkonium and confined hydrogen-like atoms in plasma environments. Furthermore, we offer a constructive commentary on the work of Obu et al. (East Eur. J. Phys. 3, 146–157, 2023), with the aim of clarifying a mathematical misstatement utilised in their analytical treatment of analogous systems.

Downloads

Download data is not yet available.

References

J.P. Killingbeck, J. Phys. A: Math. Gen. 14, 1005 (1981). https://doi.org/10.1088/0305-4470/14/5/020

H. Hamzavi, and A.A. Rajabi, Ann. Phys. 334, 316 (2013). https://doi.org/10.1016/j.aop.2013.04.007

M. Chabab, A. Lahbas, and M. Oulne, Eur. Phys. J. A, 51, 131 (2015). https://doi.org/10.1140/epja/i2015-15131-y

O.J. Oluwadare, and K.J. Oyewumi, Chinese Phys. Lett. 34, 110301 (2017). https://doi.org/10.1088/0256-307X/34/11/110301

M. Hamzavi, A.A. Rajabi, and H. Hassanabadi, Few-Body Syst. 48, 171 (2010). https://doi.org/10.1007/s00601-010-0095-7

C.Y. Chen, and S.H. Dong, Phys. Lett. A, 335, 374 (2005). https://doi.org/10.1016/j.physleta.2004.12.062

N. Brambilla, et al., Rev. Mod. Phys. 77, 1423 (2005). https://doi.org/10.1103/RevModPhys.77.1423

E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, and T.-M.Yan, Phys. Rev. D, 17, 3090 (1978). https://doi.org/10.1103/PhysRevD.17.3090

F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935). https://doi.org/10.11429/ppmsj1919.17.0 48

S. Fl¨ugge, Practical Quantum Mechanics, (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-61995-3

M. Sreelakshmi, and R. Akhilesh, J. Phys. G: Nucl. Part. Phys. 50, 073001 (2023). https://doi.org/10.1088/1361-6471/acd1a3

A. Kievsky, E. Garrido, M. Viviani, et al. Few-Body Syst. 65, 23 (2024). https://doi.org/10.1007/s00601-024-01893-6

M. Sreelakshmi, and R. Akhilesh, Int. J. Theor. Phys. 64, 58 (2025). https://doi.org/10.1007/s10773-025-05924-8

N. Mukherjee, C.N. Patra, and A.K. Roy, Phys. Rev. A, 104, 012803 (2021). https://doi.org/10.1103/PhysRevA.104.012803

Zhan-Bin Chen, Phys. Plasmas, 30, 032103 (2023). https://doi.org/10.1063/5.0140534

Tong Yan, et al., Phys. Rev. Plasmas, 31, 042110 (2024). https://doi.org/10.1063/5.0185339

B. G¨on¨ul, K. K¨oksal, and E. Bakir, Phys. Scr. 73, 279 (2006). https://doi.org/10.1088/0031-8949/73/3/007

A. Arda, and R. Sever, Zeitschrift f¨ur Naturforschung A, 69, 163 (2014). https://doi.org/10.5560/zna.2014-0007

J.A. Obu, E.P. Inyang, E.S. William, D.E. Bassey, and E.P. Inyang, East Eur. J. Phys. (3), 146 (2023). https://doi.org/10.26565/2312-4334-2023-3-11

A. Guvendi, and O. Mustafa, Eur. Phys. J. C, 84, 866 (2024). https://doi.org/10.1140/epjc/s10052-024-13192-9

O. Mustafa, and A. Guvendi, Int. J. Geom. Methods Mod. Phys. 2550091 (2024). https://doi.org/10.1142/S0219887825500914

O. Mustafa, and A. Guvendi, Eur. Phys. J. C, 85, 34 (2025). https://doi.org/10.1140/epjc/s10052-025-13779-w

A. Guvendi, and O. Mustafa, Nucl. Phys. B, 1014, 116874 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116874

A. Guvendi, and O. Mustafa, Ann. Phys. 473, 169897 (2025). https://doi.org/10.1016/j.aop.2024.169897

F.M. Fernandez, arXiv:2205.07884 https://doi.org/10.48550/arXiv.2205.07884

A. Ronveaux (Ed.), Heun’s Differential Equations, (Oxford University Press, Oxford, 1995). https://doi.org/10.1093/oso/9780198596950.001.0001

M.S. Child, S-H. Dong, and X-G. Wang, J. Phys. A, 33, 5653 (2000). https://doi.org/10.1088/0305-4470/33/32/303

P. Amore, and F.M. Fernandez, Phys. Scr. 95, 105201 (2020). https://doi.org/10.1088/1402-4896/abb252

Published
2025-12-08
Cited
How to Cite
Khaled, F. Z., Moumni, M., & Falek, M. (2025). On Solutions of the Killingbeck Potential and Clarifying Comments on a Related Analytical Approach. East European Journal of Physics, (4), 164-171. https://doi.org/10.26565/2312-4334-2025-4-14