Effect of Substrate Temperature on the Morphology and Crystallinity of TiO₂ Thin Films Grown by ALD Using TTIP and H₂O

  • Temur K. Turdaliev Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan https://orcid.org/0000-0002-0732-9357
  • Khojiakhmad Kh. Zokhidov Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan https://orcid.org/0009-0008-9273-5712
  • Shukhrat Ch. Iskandarov Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan https://orcid.org/0000-0002-3002-9141
  • Usmonjon F. Berdiyev Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan https://orcid.org/0000-0003-2808-0105
Keywords: TiO₂, ALD, Anatase, Crystallinity, Morphology, Substrate temperature, XRD, Raman

Abstract

This study investigates the influence of substrate temperature on the morphological and structural characteristics of TiO2 thin films synthesized by thermal ALD using titanium tetraisopropoxide and water as precursors. The substrate temperature was varied from 200 to 275 °C in 25 °C increments. Surface morphology was examined using atomic force microscopy, while the crystalline structure was analyzed by XRD and Raman spectroscopy. It was found that films deposited at 200 °C exhibited an amorphous structure and a smooth, conformal surface with minimal roughness. Increasing the temperature to 225 °C led to the formation of microstructures and the emergence of initial signs of crystallization, accompanied by an increase in surface roughness. At 250-275 °C, a well-defined polycrystalline anatase structure was formed, characterized by grain development and nanostructure agglomeration, as evidenced by the increased intensity of diffraction peaks and higher surface roughness parameters. According to the XRD analysis, the average crystallite size ranged from 32 to 71 nm, depending on the synthesis temperature. The results demonstrate that deposition temperature exerts a comprehensive effect on both the phase composition and surface morphology of TiO2 films, which must be considered for their application in functional nanostructures, photocatalytic systems, sensors, and microelectronic devices.

Downloads

Download data is not yet available.

References

V. Morgunov, S. Lytovchenko, V. Chyshkala, D. Riabchykov, and D. Matviienko, “Comparison of Anatase and Rutile for Photocatalytic Application: the Short Review,” East Eur. J. Phys. (4), 18–30 (2021). https://doi.org/10.26565/2312-4334-2021-4-02

V. Yadav, S. Chaudhary, S.K. Gupta, and A.S. Verma, “Synthesis and characterization of TiO2 thin film electrode based dye sensitized solar cell,” East Eur. J. Phys. (3), 129–133 (2020). https://doi.org/10.26565/2312-4334-2020-3-16

Y. Song, J. Yuan, Q. Chen, X. Liu, Y. Zhou, J. Cheng, S. Xiao, M.K. Chen, and Z. Geng, “Three-dimensional varifocal meta-device for augmented reality display,” PhotoniX, 6(1), (2025). https://doi.org/10.1186/s43074-025-00164-9

P.P. Conti, E. Scopel, E.R. Leite, and C.J. Dalmaschio, “Nanostructure morphology influences in electrical properties of titanium dioxide thin films,” J. Mater. Res. 35(21), 3012–3020 (2020). https://doi.org/10.1557/jmr.2020.235

E. Kumi-Barimah, R. Penhale-Jones, A. Salimian, H. Upadhyaya, A. Hasnath, and G. Jose, “Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films,” Sci. Rep. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-020-67367-x

D.A.S. Mulus, M.D. Permana, Y. Deawati, and D.R. Eddy, “A current review of TiO2 thin films: synthesis and modification effect to the mechanism and photocatalytic activity,” Appl. Surf. Sci. Adv. 27, 100746 (2025). https://doi.org/10.1016/j.apsadv.2025.100746

J.P. Niemelä, G. Marin, and M. Karppinen, “Titanium dioxide thin films by atomic layer deposition: A review,” Semicond. Sci. Technol. 32(9), 1–20 (2017). https://doi.org/10.1088/1361-6641/aa78ce

J.P. Klesko, R. Rahman, A. Dangerfield, C.E. Nanayakkara, T. L’Esperance, D.F. Moser, L. Fabián Peña, E.C. Mattson, C.L. Dezelah, R.K. Kanjolia, and Y.J. Chabal, “Selective Atomic Layer Deposition Mechanism for Titanium Dioxide Films with (EtCp)Ti(NMe2)3: Ozone versus Water,” Chem. Mater. 30(3), 970–981 (2018). https://doi.org/10.1021/acs.chemmater.7b04790

T.K. Turdaliev, K.B. Ashurov, and R.K. Ashurov, “Morphology and Optical Characteristics of TiO2 Nanofilms Grown by Atomic-Layer Deposition on a Macroporous Silicon Substrate,” J. Appl. Spectrosc. 91(4), 769–774 (2024). https://doi.org/10.1007/s10812-024-01783-z

L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, and J. Aarik, “Atomic layer deposition of TiO2 from TiCl4 and O3,” Thin Solid Films 542, 100–107 (2013). https://doi.org/10.1016/j.tsf.2013.06.074

J.-J. Park, W.-J. Lee, G.-H. Lee, I.-S. Kim, B.-C. Shin, and S.-G. Yoon, “Very Thin TiO2 Films Prepared by Plasma Enhanced Atomic Layer Deposition (PEALD),” Integr. Ferroelectr. 68(1), 129–137 (2004). https://doi.org/10.1080/10584580490895815

T.K. Turdaliev, “Optical Performance and Crystal Structure of TiO2 Thin Film on Glass Substrate Grown by Atomic Layer Deposition,” East Eur. J. Phys. (1), 250–255 (2025). https://doi.org/10.26565/2312-4334-2025-1-27

C. Armstrong, L.-V. Delumeau, D. Muñoz-Rojas, A. Kursumovic, J. MacManus-Driscoll, and K.P. Musselman, “Tuning the band gap and carrier concentration of titania films grown by spatial atomic layer deposition: a precursor comparison,” Nanoscale Adv. 3(20), 5908–5918 (2021). https://doi.org/10.1039/D1NA00563D

N.K. Chowdhary, and T. Gougousi, “Temperature-Dependent Properties of Atomic Layer Deposition-Grown TiO2 Thin Films,” Adv. Mater. Interfaces 2400855, (2025). https://doi.org/10.1002/admi.202400855

A.E. Maftei, A. Buzatu, G. Damian, N. Buzgar, H.G. Dill, and A.I. Apopei, “Micro-Raman—a tool for the heavy mineral analysis of gold placer-type deposits (Pianu Valley, Romania),” Minerals 10(11), 1–17 (2020). https://doi.org/10.3390/min10110988

M. Kadlečíková, Ľ. Vančo, J. Breza, M. Mikolášek, K. Hušeková, K. Fröhlich, P. Procel, M. Zeman, and O. Isabella, “Raman spectroscopy of silicon with nanostructured surface,” Optik (Stuttg). 257, 168869 (2022). https://doi.org/10.1016/j.ijleo.2022.168869

T. Lan, X. Tang, and B. Fultz, “Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations,” Phys. Rev. B - Condens. Matter Mater. Phys. 85(9), (2012). https://doi.org/10.1103/PhysRevB.85.094305

M.N. Iliev, V.G. Hadjiev, and A.P. Litvinchuk, “Raman and infrared spectra of brookite (TiO2): Experiment and theory,” Vib. Spectrosc. 64, 148–152 (2013). https://doi.org/10.1016/j.vibspec.2012.08.003

S. Prachakiew, S. Boonphan, Y. Keereeta, C. Boonruang, and A. Klinbumrung, “Structural Influence of Vanadium on the Anatase-to-Rutile Phase Transition and Bandgap Modification in TiO2 Nanocrystals,” Arab. J. Sci. Eng. (2025). https://doi.org/10.1007/s13369-025-10150-9

M.T. Islam, S. Aman, T. Bayzid, M.A. Rahaman, U. Podder, G.M. Arifuzzaman Khan, and M.A. Alam, “Crystal growth behavior of nanocrystal anatase TiO2: A Rietveld refinement in WPPF analysis,” Chem. Inorg. Mater. 6, 100108 (2025). https://doi.org/10.1016/j.cinorg.2025.100108

T. Theivasanthi, and M. Alagar, “Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight,” ArXiv:1307.1091, (2013). https://doi.org/https://doi.org/10.48550/arXiv.1307.1091

Published
2025-12-08
Cited
How to Cite
Turdaliev, T. K., Zokhidov, K. K., Iskandarov, S. C., & Berdiyev, U. F. (2025). Effect of Substrate Temperature on the Morphology and Crystallinity of TiO₂ Thin Films Grown by ALD Using TTIP and H₂O. East European Journal of Physics, (4), 449-453. https://doi.org/10.26565/2312-4334-2025-4-45