Extension from Core to No-Core Nuclear Shell Model with Hartree–Fock wave Function: Application to Positive-Parity States in 19F
Abstract
This work presents a detailed investigation of low-lying positive-parity states in the 19F nucleus by combining shell-model techniques with Hartree–Fock (HF) calculations. The study systematically extends from traditional core-based spaces (sd, zbm, psd) to the fully untruncated no-core configuration (spsdp f). Realistic single-particle wavefunctions were generated using harmonic oscillator (HO), Woods–Saxon (WS), and Skyrme parameterizations. The approach was tested across a broad set of observables, including excitation spectra, electromagnetic form factors (C0, C2, C4, M1, M3, E2, E4, and E4+M5), transition probabilities, magnetic dipole and electric quadrupole moments, as well as binding energies and rms charge radii. Discrepancies reported in earlier theoretical work, particularly for the M1 and C4 transitions at higher momentum transfers, were resolved through expanded model spaces and refined radial wavefunctions. Together with our previous study of negative-parity states in 19F, these results provide a coherent picture: systematic core-to-no-core extensions are essential for accurately reproducing both detailed and bulk nuclear properties. This unified framework strengthens theoretical modeling of 19F and establishes a foundation for future shell-model studies of nuclei in transitional and deformed regions.
Downloads
References
B.N. Ghafoor, A.H. Fatah, and A.K. Ahmed, East Eur. J. Phys. 2, 119 (2025). https://doi.org/10.26565/2312-4334-2025-2-12
W. Ryssens, and Y. Alhassid, Eur. Phys. J. A, 57(2), 76 (2021). https://doi.org/10.1140/epja/s10050-021-00416-2
A. Saxena, and P.C. Srivastava, J. Phys. G: Nucl. Part. Phys. 47(5), 055113 (2020). https://doi.org/10.1088/1361-6471/ab7ff1
K.S. Jassim, and S.R. Sahib, Int. J. Nucl. Energy Sci. Technol. 12(1), 81 (2018). https://doi.org/10.1504/IJNEST.2018.091057
B. Singh, et al., AIP Conf. Proc. 2292(1), (2020). https://doi.org/10.1063/5.0029420
O. Le Noan, and K. Sieja, Phys. Rev. C, 111(6), 064308 (2025). https://doi.org/10.1103/PhysRevC.111.064308
R.A. Radhi, A.A. Alzubadi, and E.M. Rashed, Nucl. Phys. A, 947, 12 (2016). https://doi.org/10.1016/j.nuclphysa.2015.12.004
R.A. Radhi, A.A. Abdullah, and A.H. Raheem, Nucl. Phys. A, 798(1–2), 16 (2008). https://doi.org/10.1016/j.nuclphysa.2007.11.005
N.A. Smirnova, et al., Phys. Rev. C, 100(5), 054329 (2019). https://doi.org/10.1103/PhysRevC.100.054329
B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, H. Crannell, and J.T. O’Brien, Phys. Rev. C, 32(4), 1127 (1985). https://doi.org/10.1103/PhysRevC.32.1127
P. Ring, and P. Schuck , The Nuclear Many-Body Problem, New Ed. (Springer, 2004). https://doi.org/10.1007/978-94-010-0460-2
J.D. Walecka, Theoretical Nuclear and Subnuclear Physics, (World Scientific, 2004). https://doi.org/10.1142/5500
T.H.R. Skyrme, Philos. Mag. 1(8), 1043 (1956). https://doi.org/10.1080/14786435608238186
J.R. Stone, et al., Prog. Part. Nucl. Phys. 58(2), 587 (2007). https://doi.org/10.1016/j.ppnp.2006.07.001
D. Vautherin, et al., Phys. Rev. C, 5(3), 626 (1972). https://doi.org/10.1103/PhysRevC.5.626
D. Vautherin, et al., Phys. Lett. B, 32(3), 149 (1970). https://doi.org/10.1016/0370-2693(70)90458-2
E.G. Nadjakov, K.P. Marinova, and Yu.P. Gangrsky, Systematics of nuclear charge radii, At. Data Nucl. Data Tables, 56(1), 133 (1994). https://doi.org/10.1006/adnd.1994.1005
R. Hofstadter, ”High-energy electron scattering and the charge distributions of selected nuclei,” in: Nobel Lecture in Physics, (1961). https://doi.org/10.1103/PhysRev.101.1131
B.A. Brown, and W.D.M. Rae, Nucl. Data Sheets, 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022
T.W. Donnelly, and J.D. Walecka, Annu. Rev. Nucl. Sci. 25, 329 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001553
T.W. Donnelly, and J.D. Walecka, Ann. Phys. 93, 1–57 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001553
J.P. Elliott, and T.H.R. Skyrme, Proc. R. Soc. Lond. A, 232(1191), 561 (1955). https://doi.org/10.1098/rspa.1955.0239.
A. J. H. Donn´e, et al., Nucl. Phys. A, 455, 453 (1986). https://doi.org/10.1016/0375-9474(86)90317-9
A. J. H. Donn´e, et al., Nucl. Phys. A, 469, 518 (1987). https://doi.org/10.1016/0375-9474(87)90037-6
Y. Utsuno, and S. Chiba, Phys. Rev. C, 83, 021301(R) (2011). https://doi.org/10.1103/PhysRevC.83.021301
National Nuclear Data Center (NNDC), http://www.nndc.bnl.gov/.
D. R. Tilley, H. R.Weller, C. M. Cheves, and R. M. Chasteler, Nucl. Phys. A, 595, 1 (1995). https://doi.org/10.1016/0375-9474(95)00338-1
N. J. Stone, Table of Recommended Nuclear Magnetic Dipole Moments, INDC(NDS)-0794, International Atomic Energy Agency, (2019). https://www-nds.iaea.org/publications/indc/indc-nds-0794/
N. J. Stone, Table of Recommended Nuclear Magnetic Dipole Moments: Part II, Short-Lived States, INDC(NDS)-0816, International Atomic Energy Agency, (2020). https://www-nds.iaea.org/publications/indc/indc-nds-0816/
N. J. Stone, Table of nuclear electric quadrupole moments, At. Data Nucl. Data Tables, 111, 1 (2016). https://doi.org/10.1016/j.adt.2015.11.002
I. Angeli, A consistent set of nuclear rms charge radii: Properties of the radius surface R(N,Z), At. Data Nucl. Data Tables, 87(2), 185 (2004). https://doi.org/10.1016/j.adt.2004.04.002
Copyright (c) 2025 Berun N. Ghafoor, Aziz H. Fatah, Ari K. Ahmed

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



