Extension from Core to No-Core Nuclear Shell Model with Hartree–Fock wave Function: Application to Positive-Parity States in 19F

Keywords: Nuclear shell model, No-core shell model, Hartree–Fock wave function, Skyrme Hartree–Fock, Effective interaction, Electromagnetic form factors, Energy levels of 19F

Abstract

This work presents a detailed investigation of low-lying positive-parity states in the 19F nucleus by combining shell-model techniques with Hartree–Fock (HF) calculations. The study systematically extends from traditional core-based spaces (sd, zbm, psd) to the fully untruncated no-core configuration (spsdp f). Realistic single-particle wavefunctions were generated using harmonic oscillator (HO), Woods–Saxon (WS), and Skyrme parameterizations. The approach was tested across a broad set of observables, including excitation spectra, electromagnetic form factors (C0, C2, C4, M1, M3, E2, E4, and E4+M5), transition probabilities, magnetic  dipole and electric quadrupole moments, as well as binding energies and rms charge radii. Discrepancies reported in earlier theoretical work, particularly for the M1 and C4 transitions at higher momentum transfers, were resolved through expanded model spaces and refined radial wavefunctions. Together with our previous study of negative-parity states in 19F, these results provide a coherent picture: systematic core-to-no-core extensions are essential for accurately reproducing both detailed and bulk nuclear properties. This unified framework strengthens theoretical modeling of 19F and establishes a foundation for future shell-model studies of nuclei in transitional and deformed regions.

Downloads

Download data is not yet available.

References

B.N. Ghafoor, A.H. Fatah, and A.K. Ahmed, East Eur. J. Phys. 2, 119 (2025). https://doi.org/10.26565/2312-4334-2025-2-12

W. Ryssens, and Y. Alhassid, Eur. Phys. J. A, 57(2), 76 (2021). https://doi.org/10.1140/epja/s10050-021-00416-2

A. Saxena, and P.C. Srivastava, J. Phys. G: Nucl. Part. Phys. 47(5), 055113 (2020). https://doi.org/10.1088/1361-6471/ab7ff1

K.S. Jassim, and S.R. Sahib, Int. J. Nucl. Energy Sci. Technol. 12(1), 81 (2018). https://doi.org/10.1504/IJNEST.2018.091057

B. Singh, et al., AIP Conf. Proc. 2292(1), (2020). https://doi.org/10.1063/5.0029420

O. Le Noan, and K. Sieja, Phys. Rev. C, 111(6), 064308 (2025). https://doi.org/10.1103/PhysRevC.111.064308

R.A. Radhi, A.A. Alzubadi, and E.M. Rashed, Nucl. Phys. A, 947, 12 (2016). https://doi.org/10.1016/j.nuclphysa.2015.12.004

R.A. Radhi, A.A. Abdullah, and A.H. Raheem, Nucl. Phys. A, 798(1–2), 16 (2008). https://doi.org/10.1016/j.nuclphysa.2007.11.005

N.A. Smirnova, et al., Phys. Rev. C, 100(5), 054329 (2019). https://doi.org/10.1103/PhysRevC.100.054329

B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, H. Crannell, and J.T. O’Brien, Phys. Rev. C, 32(4), 1127 (1985). https://doi.org/10.1103/PhysRevC.32.1127

P. Ring, and P. Schuck , The Nuclear Many-Body Problem, New Ed. (Springer, 2004). https://doi.org/10.1007/978-94-010-0460-2

J.D. Walecka, Theoretical Nuclear and Subnuclear Physics, (World Scientific, 2004). https://doi.org/10.1142/5500

T.H.R. Skyrme, Philos. Mag. 1(8), 1043 (1956). https://doi.org/10.1080/14786435608238186

J.R. Stone, et al., Prog. Part. Nucl. Phys. 58(2), 587 (2007). https://doi.org/10.1016/j.ppnp.2006.07.001

D. Vautherin, et al., Phys. Rev. C, 5(3), 626 (1972). https://doi.org/10.1103/PhysRevC.5.626

D. Vautherin, et al., Phys. Lett. B, 32(3), 149 (1970). https://doi.org/10.1016/0370-2693(70)90458-2

E.G. Nadjakov, K.P. Marinova, and Yu.P. Gangrsky, Systematics of nuclear charge radii, At. Data Nucl. Data Tables, 56(1), 133 (1994). https://doi.org/10.1006/adnd.1994.1005

R. Hofstadter, ”High-energy electron scattering and the charge distributions of selected nuclei,” in: Nobel Lecture in Physics, (1961). https://doi.org/10.1103/PhysRev.101.1131

B.A. Brown, and W.D.M. Rae, Nucl. Data Sheets, 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022

T.W. Donnelly, and J.D. Walecka, Annu. Rev. Nucl. Sci. 25, 329 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001553

T.W. Donnelly, and J.D. Walecka, Ann. Phys. 93, 1–57 (1975). https://doi.org/10.1146/annurev.ns.25.120175.001553

J.P. Elliott, and T.H.R. Skyrme, Proc. R. Soc. Lond. A, 232(1191), 561 (1955). https://doi.org/10.1098/rspa.1955.0239.

A. J. H. Donn´e, et al., Nucl. Phys. A, 455, 453 (1986). https://doi.org/10.1016/0375-9474(86)90317-9

A. J. H. Donn´e, et al., Nucl. Phys. A, 469, 518 (1987). https://doi.org/10.1016/0375-9474(87)90037-6

Y. Utsuno, and S. Chiba, Phys. Rev. C, 83, 021301(R) (2011). https://doi.org/10.1103/PhysRevC.83.021301

National Nuclear Data Center (NNDC), http://www.nndc.bnl.gov/.

D. R. Tilley, H. R.Weller, C. M. Cheves, and R. M. Chasteler, Nucl. Phys. A, 595, 1 (1995). https://doi.org/10.1016/0375-9474(95)00338-1

N. J. Stone, Table of Recommended Nuclear Magnetic Dipole Moments, INDC(NDS)-0794, International Atomic Energy Agency, (2019). https://www-nds.iaea.org/publications/indc/indc-nds-0794/

N. J. Stone, Table of Recommended Nuclear Magnetic Dipole Moments: Part II, Short-Lived States, INDC(NDS)-0816, International Atomic Energy Agency, (2020). https://www-nds.iaea.org/publications/indc/indc-nds-0816/

N. J. Stone, Table of nuclear electric quadrupole moments, At. Data Nucl. Data Tables, 111, 1 (2016). https://doi.org/10.1016/j.adt.2015.11.002

I. Angeli, A consistent set of nuclear rms charge radii: Properties of the radius surface R(N,Z), At. Data Nucl. Data Tables, 87(2), 185 (2004). https://doi.org/10.1016/j.adt.2004.04.002

Published
2025-12-08
Cited
How to Cite
Ghafoor, B. N., Fatah, A. H., & Ahmed, A. K. (2025). Extension from Core to No-Core Nuclear Shell Model with Hartree–Fock wave Function: Application to Positive-Parity States in 19F. East European Journal of Physics, (4), 112-132. https://doi.org/10.26565/2312-4334-2025-4-10