Hubble’s Law and It’s Exponential Generalization with Cosmological Applications
Abstract
Hubble’s law reveals how the components of the universe adhere to overarching dynamical rules on a cosmological scale. While it is most renowned for describing the universe’s expansion, a general displacement equation derived in alignment with this law, along with a general equation of converging displacement, has been applied to estimate the time remaining before the Milky Way and Andromeda collide. This estimate closely aligns with results from numerical simulations of other studies. Additionally, the implications of this generalized equation provide valuable insights into key cosmological enigmas, including the time variation of the Hubble parameter, the cosmological past incompleteness, and the enduring mystery of the relationship between the subtle value of the cosmological constant and the quantum zero-point energy of the vacuum. It has also been successful in explaining the structure of spiral galaxie.
Downloads
References
E. Schr¨odinger, Space-Time Structure, (Cambridge University Press, Cambridge, 1950).
J. B. Hartle, Gravity (Addison Wesley, San Francisco, 2003).
K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering, (Cambridge University Press, Cambridge, 2006).
M. L. Boas, Mathematical Methods in the Physical Sciences, (John Wiley & Sons, New York, 2006).
V. Balakrishnan, Mathematical Physics, (Springer, Berlin, 2020).
E. Hubble, “A relation between distance and radial velocity among extra galactic nebulae,” Proc. Natl. Acad. Sci. U.S.A. 15, 168-173 (1929), https://doi.org/10.1073/pnas.15.3.168
E. Hubble and M. L. Humason, “The velocity-distance relation among extra-galactic nebulae,” Astrophys. J. 74, 43 (1931), https://doi.org/10.1086/143323
E. Hubble, and M. L. Humason, “The velocity-distance relation for isolated extra-galactic nebulae,” Proc. Natl. Acad. Sci. U.S.A. 20, 264 (1934).
M. L. Humason, A. Sandage, and J. A. Westphal, “Redshifts and magnitudes of extragalactic nebulae,” Astron. J. 61, 97 (1956).
W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. Kennicutt Jr., and H. C. Ford, “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,” Astrophys. J. 553, 47 (2001), https://doi.org/10.1086/320638
A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, “A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3,” Astrophys. J. 730, 119 (2011), https://doi.org/10.1088/0004-637X/730/2/119
W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns, A. Monson, S. E. Persson, M. Seibert, and J. Rigby, “Carnegie Hubble Program: A mid-infrared calibration of the Hubble constant,” Astrophys. J. 758, 24 (2012), https://doi.org/10.1088/0004-637X/758/1/24
A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid, D. O. Jones, and J. M. Silverman, “A 2.4% determination of the local value of the Hubble constant,” Astrophys. J. 826, 56 (2016), https://doi.org/10.3847/0004-637X/826/1/56
R. P. van der Marel, M. A. Fardal, S. T. Sohn, E. Patel, G. Besla, A. del Pino, J. Sahlmann, and L. L. Watkins, “First Gaia Dynamics of the Andromeda System: DR2 Proper Motions, Orbits, and Rotation of M31 and M33,” Astrophys. J. 872, 24 (2019), https://doi.org/10.3847/1538-4357/ab001b
R. Schiavi, R. Capuzzo-Dolcetta, M. Arca-Sedda, and M. Spera, “Future merger of the MilkyWay with the Andromeda galaxy and the fate of their supermassive black holes,” Astron. Astrophys. 642, A30 (2020), https://doi.org/10.1051/0004-6361/202038674
A. R. Choudhuri, Astrophysics for Physicists, (Cambridge University Press, Cambridge, 2010).
P. J. E. Peebles, Principles of Physical Cosmology, (Princeton University Press, Princeton, 1993).
D. Eager, A.-M. Pendrill, and N. Reistad, “Beyond velocity and acceleration: jerk, snap and higher derivatives,” Eur. J. Phys. 37, 065008 (2016), https://doi.org/10.1088/0143-0807/37/6/065008
J. J. de Jong, Y. Wu, M. Carricato, and J. L. Herder, “A pure-inertia method for dynamic balancing of symmetric planar mechanisms,” in: Advances in Robot Kinematics 2018. ARK 2018. Springer Proceedings in Advanced Robotics, vol 8, edited by J. Lenarcic, and V. Parenti-Castelli, (Springer, Cham. 2018), pp 277–284. https://doi.org/10.1007/978-3-319-93188-3 32
M. Visser, “Jerk, snap and the cosmological equation of state,” Class. Quantum Grav. 21, 2603 (2004), https://doi.org/10.1088/0264-9381/21/11/006
T. J. Cox, and A. Loeb, “The collision between the MilkyWay and Andromeda,” Mon. Not. R. Astron. Soc. 386, 461–474 (2008), https://doi.org/10.1111/j.1365-2966.2008.13048.x
J. Binney, and S. Tremaine, Galactic Dynamics, (Princeton University Press, Princeton, 1987).
S. T. Sohn, J. Anderson, and R. P. van der Marel, “The M31 velocity vector. I. Hubble Space Telescope proper-motion measurements,” Astrophys. J. 753, 7 (2012), https://doi.org/10.1088/0004-637X/753/1/7
R. P. van der Marel, G. Besla, T. J. Cox, S. T. Sohn, and J. Anderson, “The M31 velocity vector. III. Future MilkyWay–M31–M33 orbital evolution, merging, and fate of the Sun,” Astrophys. J. 753, 9 (2012), https://doi.org/10.1088/0004-637X/753/1/9
R. P. van der Marel, M. Fardal, G. Besla, R. L. Beaton, S. T. Sohn, J. Anderson, T. Brown, and P. Guhathakurta, “The M31 velocity vector. II. Radial orbit toward the Milky Way and implied local group mass,” Astrophys. J. 753, 8 (2012), https://doi.org/10.1088/0004-637X/753/1/8
R. P. van der Marel, and N. Kallivayalil, “Third-epoch Magellanic Cloud proper motions. II. The Large Magellanic Cloud rotation field in three dimensions,” Astrophys. J. 728, 121 (2014), https://doi.org/10.1088/0004-637X/781/2/121
A. W. McConnachie and M. J. Irwin, “The satellite distribution of M31,” Mon. Not. R. Astron. Soc. 365, 902–914 (2006), https://doi.org/10.1111/j.1365-2966.2005.09771.x
S. Li, A. G. Riess, M. P. Busch, S. Casertano, L. M. Macri, and W. Yuan, “A Sub-2% Distance to M31 from Photometrically Homogeneous Near-infrared Cepheid Period–Luminosity Relations Measured with the Hubble Space Telescope,” Astrophys. J. 920, 84 (2021), https://doi.org/10.3847/1538-4357/ac1597
Y. B. Zel’dovich, “The cosmological constant and the theory of elementary particles,” Sov. Phys. Usp. 11, 381 (1968). [30] S. E. Rugh, and H. Zinkernagel, “The quantum vacuum and the cosmological constant problem,” Stud. Hist. Philos. Mod. Phys. 33, 663-705 (2002), https://doi.org/10.1016/S1355-2198(02)00033-3
S. Carroll, “The cosmological constant,” Living Rev. Relativ. 4, 1 (2001), https://doi.org/10.12942/lrr-2001-1
T. Padmanabhan, “Cosmological constant: the weight of the vacuum,” Phys. Rep. 380, 235-320 (2003), https://doi.org/10.1016/S0370-1573(03)00120-0
J. Sol`a, “Cosmological constant and vacuum energy: Old and new ideas,” J. Phys. Conf. Ser. 435, 012015 (2013).
M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby, General Relativity, (Cambridge University Press, Cambridge, 2006).
S. Carroll, Spacetime and Geometry, (Pearson/Addison Wesley, Boston, 2004).
S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1-23 (1989), https://doi.org/10.1103/RevModPhys.61.1
S. Weinberg, Gravitation and Cosmology, (John Wiley & Sons, New Jersey, 1972).
A. Islam, “Deriving the cosmological constant from the Euler–Lagrange equation of second-order differentiable gravitational field Lagrangian,” AIP Adv. 13, 125130 (2023), https://doi.org/10.1063/5.0164219
A. R. Choudhuri, The Physics of Fluids and Plasmas, (Cambridge University Press, Cambridge, 1998).
C. Clarke and B. Carswell, Principle of Astrophysical Fluid Dynamics, (Cambridge University Press, Cambridge, 2007).
O. Regev, O. M. Umurhan, and P. A. Yecko, Modern Fluid Dynamics for Physics and Astrophysics, (Springer Science & Business Media, 2016).
M. K. H. Kiessling, “The ‘Jeans swindle’: A true story—mathematically speaking,” Adv. Appl. Math. 31, 132-149 (2003), https://doi.org/10.1016/S0196-8858(02)00556-0
M. Falco, S. H. Hansen, R.Wojtak, and G. A. Mamon, “Why does the Jeans swindle work?” Mon. Not. R. Astron. Soc. Lett. 431, L6–L9 (2013), https://doi.org/10.1093/mnrasl/sls051
J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Phys. Rev. D 28, 2960-2975 (1983), https://doi.org/10.1103/PhysRevD.28.2960
P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559-606 (2003), https://doi.org/10.1103/RevModPhys.75.559
L. D. Landau and E. M. Lifshitz, Theoretical Physics Vol. 1: Mechanics, (Pergamon Press, Oxford, 1969).
R. N. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill, New York, 2000).
J. Prat, C. Hogan, C. Chang, and J. Frieman, “Vacuum energy density measured from cosmological data,” J. Cosmol. Astropart. Phys. 2022, (2022), https://doi.org/10.1088/1475-7516/2022/06/015
W. L. Freedman, “Measurements of the Hubble constant: tensions in perspective,” Astrophys. J. 919, 16 (2021), https://doi.org/10.3847/1538-4357/ac0e95
H. Kragh, “Cyclic models of the relativistic universe: the early history,” in: Beyond Einstein. Einstein Studies Vol. 14, edited by D. Rowe, T. Sauer, and S. Walter, (Birkh¨auser, Cham, 2018).
A. Ijjas, and P. J. Steinhardt, “A new kind of cyclic universe,” Phys. Lett. B, 795, 666-672 (2019), https://doi.org/10.1016/j.physletb.2019.06.056
D. A. B. Miller, Quantum Mechanics for Scientists and Engineers, (Cambridge University Press, Cambridge, 2008).
A. F. J. Levi, Applied Quantum Mechanics, (Cambridge University Press, Cambridge, 2006).
P. J. E. Peebles, The Large-Scale Structure of the Universe, (Princeton University Press, Princeton, 1980).
T. Padmanabhan, Theoretical Astrophysics Vol. III: Galaxies and Cosmology, (Cambridge University Press, Cambridge, 2002).
W. De Sitter, “On Einstein’s theory of gravitation and its astronomical consequences, First Paper,” Mon. Not. R. Astron. Soc. 77, 481 (1916).
W. De Sitter, “On Einstein’s theory of gravitation and its astronomical consequences, Second Paper,” Mon. Not. R. Astron. Soc. 77, 155 (1916).
W. De Sitter, “On Einstein’s theory of gravitation and its astronomical consequences, Third Paper,” Mon. Not. R. Astron. Soc. 78, 3 (1917).
S. Weinberg, Cosmology, (Oxford University Press, Oxford, 2008).
A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev. D, 23, 2 (1981), https://doi.org/10.1103/PhysRevD.23.347
H. Bondi and T. Gold, “The steady-state theory of the expanding universe,” Mon. Not. R. Astron. Soc. 108, 252–270 (1948), https://doi.org/10.1093/mnras/108.3.252
P. Coles and F. Lucchin, Cosmology (John Wiley & Sons, Chichester, 2022).
R. d’Inverno and J. Vickers, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 2022).
A. Borde, A. H. Guth, and A. Vilenkin, “Inflationary spacetimes are incomplete in past directions,” Phys. Rev. Lett. 90, 151301 (2003), https://doi.org/10.1103/PhysRevLett.90.151301
B. L. Davis, J. C. Berrier, D. W. Shields, J. Kennefick, D. Kennefick, M. S. Seigar, C. H. S. Lacy, and I. Puerari, “Measurement of galactic logarithmic spiral arm pitch angle using two-dimensional fast Fourier transform decomposition,” Astrophys. J. Suppl. Ser. 199, 33 (2012), https://doi.org/10.1088/0067-0049/199/2/33
T. A. Cook, The Curves of Life,, (Constable and Company Ltd., London, 1914).
P. Ball, The Self-Made Tapestry: Pattern Formation in Nature, (Oxford University Press, Oxford, 1999).
J. D. Murray, Mathematical Biology: I. An Introduction, (Springer-Verlag, Berlin, 2002).
M. S. Seigar and P. A. James, “The structure of spiral galaxies – II. Near-infrared properties of spiral arms,” Mon. Not. R. Astron. Soc. 299, 685 (1998).
H. I. Ringermacher and L. R. Mead, “A new formula describing the scaffold structure of spiral galaxies,” Mon. Not. R. Astron. Soc. 397, 164–171 (2009), https://doi.org/10.1111/j.1365-2966.2009.14950.x
R. Buta, “The world of galaxies,” in The World of Galaxies, edited by H. G. Corwin Jr., and L. Bottinelli (Springer-Verlag, Berlin, 1989), p. 29.
Copyright (c) 2025 Ashraful Islam

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



